go to top scroll for more

Overview of the ETI’s Bioenergy Value Chain Model (BVCM) Capabilities


Citation ETI, E4Tech, Imperial College Consultants (ICON), Overview of the ETI’s Bioenergy Value Chain Model (BVCM) Capabilities, ETI, 2015. https://doi.org/10.5286/UKERC.EDC.000880.
Cite this using DataCite
Author(s) ETI, E4Tech, Imperial College Consultants (ICON),
Project partner(s) ETI
Publisher ETI
DOI https://doi.org/10.5286/UKERC.EDC.000880
Download BVCM-Guide-FINAL.pdf document type
Abstract What is the most effective way of delivering a particular bioenergy outcome in the UK, taking into account the available biomass resources, the geography of the UK, time, technology options and logistics networks?

Biomass must play a significant role in the future energy mix if the UK is to meet its GHG emissions targets cost-effectively. BVCM is a comprehensive and flexible toolkit used to understand the most effective routes from biomass to energy accounting for all end-to-end elements in the pathways: land use, biomass production (including arable crops, energy crops and forestry); imports, conversion, transport, storage, purchase, sale and disposal of resources; CCS technologies and utilisation of waste resources. The most effective route depends on the resource and technology data, combined with the objective function chosen and the constraints imposed on the system.

To the ETI’s knowledge, BVCM is the most comprehensive and flexible model for whole system optimisation of bioenergy value chains to be produced to date. It currently contains 82 different resources comprising bio-resources, wastes, intermediates, final energy vectors and co-products. There are 61 distinct technologies, at different scales with multiple modes (more than 1200 combinations in total), including: pretreatment and densification; gaseous fuel production; liquid fuel production; heat, power and combined heat and power generation; waste-to-energy; and carbon capture technologies.

Since BVCM is data-driven, it can easily be extended to include other resources or technologies by adding to the database, or modified to analyse alternative assumptions. It could also be applied to other countries simply by providing different data sets for the available land areas, yield potentials (and impacts), waste potentials and so on.

The BVCM toolkit enables us to assess the sensitivities of the system to different parameters, drawing on the best available data. The ETI is using the BVCM toolkit to help determine the role that biomass should play in achieving the UK’s energy and GHG emissions targets in 2050.
Associated Project(s) ETI-DE2001: Energy from Waste
Associated Dataset(s) No associated datasets
Associated Publication(s)

Advanced waste gasification, future strategies and potential outputs

Bioenergy crops in the UK: Case studies on successful whole farm integration evidence pack

Energy from Waste: Characterisation of UK Waste Streams and Assessment of Energy from Waste Technology Opportunities - Request for Proposal

Energy From Waste : Executive Summary

Energy From Waste : Executive Summary - WP1.3 - Final Waste Report

Energy From Waste : Executive Summary - WP2.2 - Technology Assessment

Energy From Waste : Executive Summary - WP3.3 - Technology System Improvement Opportunity Report

Energy From Waste : Executive Summary - WP4.2 - UK Benefits Case

Energy From Waste : Executive Summary - WP4.2 - UK Benefits Case - Compatibility with CCS

Energy From Waste : Project Overview

Energy From Waste : WP1.1 - Current Waste Data and Collection Plan Report

Energy From Waste : WP1.2 - Initial Waste Assessment

Energy From Waste : WP1.3 - Final Waste Assessment

Energy From Waste : WP2.2- Appendix B - Batch anaerobic digestion assay for food waste and paper and card as well as their mixtures

Energy From Waste : WP2.2 - Appendix C - Thermal Waste Material Conversion Technology Test Report Gasification and Pyrolysis

Energy From Waste : WP2.2 - Appendix D - Power Generation

Energy From Waste : WP2.2 - Technology Assessment Report

Energy From Waste : WP3.1 - Report on Selected and Validated Models

Energy From Waste : WP3.2 - System Model Development Report

Energy From Waste : WP3.3 - Technology System Improvement Opportunity Report

Energy From Waste : WP3.3 - Technology System Improvement Opportunity Report - Executive Summary

Energy From Waste : WP3 and WP4 - Key Legislation and Constraints for Energy from Waste Technologies

Energy From Waste : WP4.1 - Project Framework Deliverable

Energy From Waste : WP4.2 - UK Benefit Case Report - Syn Gas for Grid Injection

Energy From Waste : WP4.2 - UK Benefits Case - Appendices A and D-H to the main report (B1,2,and 3, and C are separate documents)

Energy From Waste : WP4.2 - UK Benefits Case - Appendix B1 - Energy from Waste Technology Landscape Review - Executive Summary

Energy From Waste : WP4.2 - UK Benefits Case - Appendix B2 - Energy from Waste Technology Landscape Review - Anaerobic Digestion

Energy From Waste : WP4.2 - UK Benefits Case - Appendix B3 - Energy from Waste Technology Landscape Review - Advanced Thermal Technologies

Energy From Waste : WP4.2 - UK Benefits Case - Appendix C - Pyrolysis and Gasification of Waste Review

Energy From Waste : WP4.2 - UK Benefits Case - A Review of Biomass to Liquid Fuels via Pyrolysis Oil

Energy From Waste : WP4.2 - UK Benefits Case - main report

Energy From Waste : WP4.2 - UK Benefits Case - Syn Gas for Fuels and Chemicals

Energy From Waste : WP4 -Initial financial model assumption list to promote discussion - Waste to Energy: High-level generic plant assumptions

ETI Insights Report - Bioenergy - Enabling UK biomass

ETI Insights Report - Insights into the future UK Bioenergy Sector, gained using the ETI’s Bioenergy Value Chain Model (BVCM)

Infographic - 10 years to prepare for a low carbon transition - Bioenergy

Infographic - Targeting new and cleaner uses for wastes and biomass using gasification

Targeting new and cleaner uses for wastes and biomass using gasification

Targeting new and cleaner uses for wastes and biomass using gasification - Presentation

Waste gasification with syngas clean up ? reaching commercial demonstration and future prospects in the wider bioenergy sector - Presentation