go to top scroll for more

Hydrodynamic analysis of a ducted, open centre tidal stream turbine using blade element momentum theory

Citation Allsop, S., Peyrard, C., Thies, P.R., Boulougouris, E. and Harrison, G.P. Hydrodynamic analysis of a ducted, open centre tidal stream turbine using blade element momentum theory, Ocean Engineering, 141: 531-542, 2017. https://doi.org/10.1016/j.oceaneng.2017.06.040.
Cite this using DataCite
Author(s) Allsop, S., Peyrard, C., Thies, P.R., Boulougouris, E. and Harrison, G.P.
Project partner(s) University of Edinburgh, Electricité de France, University of Exeter, University of Strathclyde
Publisher Ocean Engineering, 141: 531-542
DOI https://doi.org/10.1016/j.oceaneng.2017.06.040
Abstract This paper analyses two different configurations of horizontal axis Tidal Stream Turbines (TSTs) using a Blade Element Momentum Theory (BEMT) model. Initially, a “conventional” three bladed and bare turbine is assessed, comparing against experimental measurements and existing literature. Excellent agreement is seen, increasing confidence in both the implementation of the theory and the applicability of the method. The focus of the paper lies on the analysis of a ducted and open centre turbine. An analytical adjustment to the BEMT model is applied, using empirical expressions detailed in the literature which are devised from Computational Fluid Dynamics (CFD) studies. This is modified to a symmetrical duct profile, calibrating certain geometrical parameters against blade resolved CFD studies of a bi-directional device. The results are validated with a coupled CFD blade element model (RANS BEM), where both models align very closely (within 2%) for most tip speed ratios (TSRs), including the peak power condition. Over predictions are seen at higher TSRs of up to 25% in power and 13% in thrust at TSR = 5, due to model limitations in replicating fully the complex flow interactions around the hub and the open centre. The presented approach benefits from significantly lower computational requirements, several orders of magnitude lower than reported in the RANS-BEM case, allowing practicable engineering assessments of turbine performance and reliability.

  • A BEMT model for 3 bladed bare turbines is validated with experimental data.
  • A BEMT model incorporating analytical adjustments for ducted flow is developed.
  • Rotor power and thrust are comparable to a coupled RANS BEM study.
  • Over predictions at high TSRs are located towards the open centre hub.
  • Significant computational cost savings are recorded compared with CFD.
This work was partly funded via IDCORE, the Industrial Doctorate Centre for Offshore Renewable Energy, which trains research engineers whose work in conjunction with sponsoring companies aims to accelerate the deployment of offshore wind, wave and tidal-current technologies
Associated Project(s) ETI-MA2003: Industrial Doctorate Centre for Offshore Renewable Energy (IDCORE)
Associated Dataset(s) No associated datasets
Associated Publication(s)

A model to map levelised cost of energy for wave energy projects

An Integrated Data Management Approach for Offshore Wind Turbine Failure Root Cause Analysis

An investigation of the effects of wind-induced inclination on floating wind turbine dynamics: heave plate excursion

Application of an offshore wind farm layout optimization methodology at Middelgrunden wind farm

Characterisation of current and turbulence in the FloWave Ocean Energy Research Facility

Characterization of the tidal resource in Rathlin Sound

Comparison of Offshore Wind Farm Layout Optimization Using a Genetic Algorithm and a Particle Swarm Optimizer

Component reliability test approaches for marine renewable energy

Constraints Implementation in the Application of Reinforcement Learning to the Reactive Control of a Point Absorber

Control of a Realistic Wave Energy Converter Model Using Least-Squares Policy Iteration

Cost Reduction to Encourage Commercialisation of Marine in the UK

Cumulative impact assessment of tidal stream energy extraction in the Irish Sea

Design diagrams for wavelength discrepancy in tank testing with inconsistently scaled intermediate water depth

Development of a Condition Monitoring System for an Articulated Wave Energy Converter

Dynamic mooring simulation with Code(-)Aster with application to a floating wind turbine

Environmental interactions of tidal lagoons: A comparison of industry perspectives

ETI Insights Report - Wave Energy

Exploring Marine Energy Potential in the UK Using a Whole Systems Modelling Approach

Hybrid, Multi-Megawatt HVDC Transformer Topology Comparison for Future Offshore Wind Farms

Offshore wind farm electrical cable layout optimization

Offshore wind installation vessels - A comparative assessment for UK offshore rounds 1 and 2

Optimisation of Offshore Wind Farms Using a Genetic Algorithm

Quantifying uncertainty in acoustic measurements of tidal flows using a “Virtual” Doppler Current Profiler

Reactive control of a two-body point absorber using reinforcement learning

Reactive control of a wave energy converter using artificial neural networks

Re-creation of site-specific multi-directional waves with non-collinear current

Reliability and O & M sensitivity analysis as a consequence of site specific characteristics for wave energy converters

Reliability prediction for offshore renewable energy: Data driven insights

Resource characterization of sites in the vicinity of an island near a landmass

Review and application of Rainflow residue processing techniques for accurate fatigue damage estimation

Sensitivity analysis of offshore wind farm operation and maintenance cost and availability

Simulating Extreme Directional Wave Conditions

Testing Marine Renewable Energy Devices in an Advanced Multi-Directional Combined Wave-Current Environment

Testing the robustness of optimal access vessel fleet selection for operation and maintenance of offshore wind farms

The effects of wind-induced inclination on the dynamics ofsemi-submersible floating wind turbines in the time domain

The Industrial Doctorate Centre for Offshore Renewable Energy(IDCORE) - Case Studies

The power-capture of a nearshore, modular, flap-type wave energy converter in regular waves

The SPAIR method: Isolating incident and reflected directional wave spectra in multidirectional wave basins

UK offshore wind cost optimisation: top head mass (Presentation to All Energy, 10th May 2017)