go to top scroll for more

Reliability prediction for offshore renewable energy: Data driven insights


Citation Ewing, F.J., Thies, P.R., Waldron, B., Shek, J. and Wilkinson, M. Reliability prediction for offshore renewable energy: Data driven insights, ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering Volume 3B: Structures, Safety and Reliability Trondheim, Norway, June 25?30, 2017, 2017. https://doi.org/10.1115/OMAE2017-62281.
Cite this using DataCite
Author(s) Ewing, F.J., Thies, P.R., Waldron, B., Shek, J. and Wilkinson, M.
Project partner(s) University of Edinburgh, University of Exeter, DNV GL
Publisher ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering Volume 3B: Structures, Safety and Reliability Trondheim, Norway, June 25?30, 2017
DOI https://doi.org/10.1115/OMAE2017-62281
Download 280963
Abstract Accurately quantifying and assessing the reliability of Offshore Renewable Energy (ORE) devices is critical for the successful commercialisation of the industry. At present, due to the nascent stage of the industry and commercial sensitivities there is very little available reliable field data. This presents an issue: how can the reliability of OREs be accurately assessed and predicted with a lack of specific reliability data? ORE devices largely rely on the assessment of surrogate data sources for their reliability assessment. To date there are very few published studies that empirically assess the failure rates of offshore renewable energy devices. The applicability of surrogate data sources to the ORE environment is critical and needs to be more thoroughly evaluated for a robust ORE device reliability assessment. This paper tests two commonly held assumptions used in the reliability assessment of ORE devices. Firstly, the constant failure rate assumption that underpins ORE component failure rate estimations is addressed. Secondly, a model that is often used to assess the reliability of onshore wind components, the Non-Homogeneous Poisson Power Law Process (PLP) model is empirically assessed and trend tested to determine its suitability for use in ORE reliability prediction. This paper suggests that pitch systems, generators and frequency converters cannot be considered to have constant failure rates when analysed via non-repairable methods. Thus, when performing a reliability assessment of an ORE device using non-repairable surrogate data, it cannot always be assumed that these components will exhibit random failures. Secondly, this paper suggests when using repairable system methods, the PLP model is not always accurate at describing the failure behaviour of onshore wind pitch systems, generators and frequency converters, whether they are assessed as groups of turbines, or individually. Thus, when performing a reliability assessment of an ORE device using repairable surrogate data, both model choice and assumptions should be carefully considered.
Associated Project(s) ETI-MA2003: Industrial Doctorate Centre for Offshore Renewable Energy (IDCORE)
Associated Dataset(s) No associated datasets
Associated Publication(s)

A model to map levelised cost of energy for wave energy projects

An Integrated Data Management Approach for Offshore Wind Turbine Failure Root Cause Analysis

An investigation of the effects of wind-induced inclination on floating wind turbine dynamics: heave plate excursion

Application of an offshore wind farm layout optimization methodology at Middelgrunden wind farm

Characterisation of current and turbulence in the FloWave Ocean Energy Research Facility

Characterization of the tidal resource in Rathlin Sound

Comparison of Offshore Wind Farm Layout Optimization Using a Genetic Algorithm and a Particle Swarm Optimizer

Component reliability test approaches for marine renewable energy

Constraints Implementation in the Application of Reinforcement Learning to the Reactive Control of a Point Absorber

Control of a Realistic Wave Energy Converter Model Using Least-Squares Policy Iteration

Cost Reduction to Encourage Commercialisation of Marine in the UK

Cumulative impact assessment of tidal stream energy extraction in the Irish Sea

Design diagrams for wavelength discrepancy in tank testing with inconsistently scaled intermediate water depth

Development of a Condition Monitoring System for an Articulated Wave Energy Converter

Dynamic mooring simulation with Code(-)Aster with application to a floating wind turbine

Environmental interactions of tidal lagoons: A comparison of industry perspectives

ETI Insights Report - Wave Energy

Exploring Marine Energy Potential in the UK Using a Whole Systems Modelling Approach

Hybrid, Multi-Megawatt HVDC Transformer Topology Comparison for Future Offshore Wind Farms

Hydrodynamic analysis of a ducted, open centre tidal stream turbine using blade element momentum theory

Offshore wind farm electrical cable layout optimization

Offshore wind installation vessels - A comparative assessment for UK offshore rounds 1 and 2

Optimisation of Offshore Wind Farms Using a Genetic Algorithm

Quantifying uncertainty in acoustic measurements of tidal flows using a “Virtual” Doppler Current Profiler

Reactive control of a two-body point absorber using reinforcement learning

Reactive control of a wave energy converter using artificial neural networks

Re-creation of site-specific multi-directional waves with non-collinear current

Reliability and O & M sensitivity analysis as a consequence of site specific characteristics for wave energy converters

Resource characterization of sites in the vicinity of an island near a landmass

Review and application of Rainflow residue processing techniques for accurate fatigue damage estimation

Sensitivity analysis of offshore wind farm operation and maintenance cost and availability

Simulating Extreme Directional Wave Conditions

Testing Marine Renewable Energy Devices in an Advanced Multi-Directional Combined Wave-Current Environment

Testing the robustness of optimal access vessel fleet selection for operation and maintenance of offshore wind farms

The effects of wind-induced inclination on the dynamics ofsemi-submersible floating wind turbines in the time domain

The Industrial Doctorate Centre for Offshore Renewable Energy(IDCORE) - Case Studies

The power-capture of a nearshore, modular, flap-type wave energy converter in regular waves

The SPAIR method: Isolating incident and reflected directional wave spectra in multidirectional wave basins

UK offshore wind cost optimisation: top head mass (Presentation to All Energy, 10th May 2017)