Citation |
Antonutti, R., Peyrard, C., Johanning, L., Incecik, A., Ingram, D.M. An investigation of the effects of wind-induced inclination on floating wind turbine dynamics: heave plate excursion, Ocean Engineering, 91: 208-217, 2017. https://doi.org/10.1016/j.oceaneng.2014.09.008. Cite this using DataCite |
Author(s) |
Antonutti, R., Peyrard, C., Johanning, L., Incecik, A., Ingram, D.M. |
Project partner(s) |
Electricité de France, The University of Edinburgh, Saint-Venant Hydraulics Laboratory, University of Exeter, University of Strathclyde |
Publisher |
Ocean Engineering, 91: 208-217 |
DOI |
https://doi.org/10.1016/j.oceaneng.2014.09.008 |
Abstract |
A current trend in offshore wind is the quest for exploitation of ever deeper water sites. At depths between 50 m and 100 m a promising substructure is the column-stabilised semi-submersible floating type. This solution is currently being tested at full scale at the WindFloat and Fukushima Forward demonstrator sites in Portugal and Japan respectively. The semi-sub design class frequently adopts passive motion control devices based on the water entrapment principle, such as heave plates, tanks, and skirts. Whilst effective for small inclinations, these can underperform when the structure is inclined under wind loading. This study examines the alteration of potential hydrodynamics due to wind-induced trim (geometric non-linearity) and its impact on the wind turbine’s wave response with focus on heave plate performance. Firstly it is shown by using the boundary element approach thatwind trim affects wave loading in the ocean wave band between 5 s and 15 s, and introduces hydrodynamic coupling typical of non-symmetric hulls. These features are incorporated in frequency-domain dynamic response analysis to demonstrate that said effects bear a significant impact on the turbine’s motion in waves. Accounting of heave plate excursion improves the assessment of the seaworthiness of floating wind turbine concepts, potentially leading to new design constraints.
Highlights- Wave loads on semi-sub FWT platforms are sensitive to wind-driven inclination.
- The effects of geometric non-linearity can be pronounced in presence of heave plates.
- The wave load alteration due to heave plate vertical excursion is investigated.
- Significant heave plate excursion occurs when a FWT’s mean inclination reaches 5°
- The motion of a FWTis affected heave plate excursion in the 5 s to 15 s period range
This work was partly funded via IDCORE, the Industrial Doctorate Centre for Offshore Renewable Energy, which trains research engineers whose work in conjunction with sponsoring companies aims to accelerate the deployment of offshore wind, wave and tidal-current technologies |
Associated Project(s) |
ETI-MA2003: Industrial Doctorate Centre for Offshore Renewable Energy (IDCORE) |
Associated Dataset(s) |
No associated datasets |
Associated Publication(s) |
A model to map levelised cost of energy for wave energy projects An Integrated Data Management Approach for Offshore Wind Turbine Failure Root Cause Analysis Application of an offshore wind farm layout optimization methodology at Middelgrunden wind farm Characterisation of current and turbulence in the FloWave Ocean Energy Research Facility Characterization of the tidal resource in Rathlin Sound Comparison of Offshore Wind Farm Layout Optimization Using a Genetic Algorithm and a Particle Swarm Optimizer Component reliability test approaches for marine renewable energy Constraints Implementation in the Application of Reinforcement Learning to the Reactive Control of a Point Absorber Control of a Realistic Wave Energy Converter Model Using Least-Squares Policy Iteration Cost Reduction to Encourage Commercialisation of Marine in the UK Cumulative impact assessment of tidal stream energy extraction in the Irish Sea Design diagrams for wavelength discrepancy in tank testing with inconsistently scaled intermediate water depth Development of a Condition Monitoring System for an Articulated Wave Energy Converter Dynamic mooring simulation with Code(-)Aster with application to a floating wind turbine ETI Insights Report - Wave Energy Environmental interactions of tidal lagoons: A comparison of industry perspectives Exploring Marine Energy Potential in the UK Using a Whole Systems Modelling Approach Hybrid, Multi-Megawatt HVDC Transformer Topology Comparison for Future Offshore Wind Farms Hydrodynamic analysis of a ducted, open centre tidal stream turbine using blade element momentum theory Offshore wind farm electrical cable layout optimization Offshore wind installation vessels - A comparative assessment for UK offshore rounds 1 and 2 Optimisation of Offshore Wind Farms Using a Genetic Algorithm Quantifying uncertainty in acoustic measurements of tidal flows using a “Virtual” Doppler Current Profiler Re-creation of site-specific multi-directional waves with non-collinear current Reactive control of a two-body point absorber using reinforcement learning Reactive control of a wave energy converter using artificial neural networks Reliability and O & M sensitivity analysis as a consequence of site specific characteristics for wave energy converters Reliability prediction for offshore renewable energy: Data driven insights Resource characterization of sites in the vicinity of an island near a landmass Review and application of Rainflow residue processing techniques for accurate fatigue damage estimation Sensitivity analysis of offshore wind farm operation and maintenance cost and availability Simulating Extreme Directional Wave Conditions Testing Marine Renewable Energy Devices in an Advanced Multi-Directional Combined Wave-Current Environment Testing the robustness of optimal access vessel fleet selection for operation and maintenance of offshore wind farms The Industrial Doctorate Centre for Offshore Renewable Energy(IDCORE) - Case Studies The SPAIR method: Isolating incident and reflected directional wave spectra in multidirectional wave basins The effects of wind-induced inclination on the dynamics ofsemi-submersible floating wind turbines in the time domain The power-capture of a nearshore, modular, flap-type wave energy converter in regular waves UK offshore wind cost optimisation: top head mass (Presentation to All Energy, 10th May 2017) |
|