Abstract |
There are roughly 2000 heat networks in the UK; however, this remains a niche means of providing heating to homes and other buildings, serving less than 2% of UK domestic demand. The largest networks are in Nottingham and Sheffield but these are each less than 100km in total length and serve only a small fraction of their respective city’s heat needs. Heat networks are more widespread in a number of other countries (e.g. Denmark, Finland and Sweden); a mixture of cultural, climatic and economic reasons driving their adoption there. The decisions to pursue heat networks in these countries have been reinforced through a mixture of government support, community ownership models and taxation on alternatives such as gas.
Heat networks have the potential to deliver low carbon heat to a significant proportion of homes and businesses that would be difficult to decarbonise by other means. doing so requires the creation of new network infrastructure. For this to be effective, deployment will need to be targeted to suitable areas, catering predominantly to existing buildings in denser areas. this is a shift in focus for the heat network industry much of which is set up to serve new developments
Several key challenges need to be addressed: reducing the cost of heat networks (particularly the upfront cost of procuring and installing heat networks) through technology and process advances; building a supply chain to significantly increase deployment (reaching as much as 20x current levels, in a shorter time than current levels were reached); and encouraging adoption amongst industry and consumers. Transitioning large proportions of UK heat demand over to heat networks will also require managing interactions between other parts of the energy system which,depending on the approach taken, could involve electricity networks, gas networks, other heat networks and the power generation sector.Delivering this will require market and regulatory arrangements that:- Enable clear decision-making and incentivise investment to create efficiently configured heat networks;
- Encourage (or even mandate) adoption amongst customers;
- Ensure technology and process advances are compatible with the qualities of heat networks (notably the ability to deliver large quantities of heat, long-asset life and fuel source flexibility) that contribute to making them a compelling proposition.
- Deliver effective management of the changeover of heat supply networks and systems; and
- Ensure that network infrastructures are designed and work together efficiently across vectors in real time
|