Currently applied filters
Solar thermal power & high-temp. applicationsAuthor(s): Infield, D.G.
Published: 2007
Publisher: UKERC
This document provides a road map for Photovoltaics (PV) research in the UK. It covers PV materials, cell and module design and manufacture and applications including BOS components. It is specific to the UK and reflects the strengths and weaknesses of the research base in the UK, although it is compatible with the roadmaps of other countries, particularly the one recently developed for the European Community. Its primary aim is to identify priority areas for UK PV research and assist the research funding agencies, particularly EPSRC, DTI and the Carbon Trust, in developing their research programmes, but it also considers the need to develop UK capacity, both in terms of expertise and research facilities.
Research cannot take place in a commercial vacuum, and although not its primary function, the road map will outline the context for PV research in the UK. The potential for market growth in the UK and more widely is outlined and the need for market stimulation in the UK discussed.
The road map reflects the outcomes of a two day PV road mapping exercise, organised by the UKERC Meeting Place, that took place in Edinburgh in July 2006, together with inputs from a number of the attendees over the following weeks and subsequently contributions from the wider researcher community in response to an initial draft. The road map has also been subject to international peer review, and we indebted to these reviewers for their input.
Author(s): Lowes, R., Woodman, B. and Clark, M
Published: 2018
Publisher: UKERC
This working paper considers the risks and opportunities posed to UK heat sector businesses by a potential transformation towards a low-carbon heat system in the UK. It is an output from the Heat, Incumbency and Transformations (HIT) project which is part of the UK Energy Research Centre programme.
The HIT project is investigating the idea of incumbency, considering what the term means, how it is present in the UKs heat sector and what the implications of incumbency are for the UKs potential transformation from a high carbon heat system to a low-carbon heat system.
The previous working paper developed a working definition of incumbency (Loweset al., 2017). This working paper forms the second phase of the project, exploring who the incumbents are in the UK heat system and the implications of the potential transformation for incumbents.
An online m
Author(s): McLachlan, C., Braunholtz-Speight, T., Hawker, G. and Watson, J.
Published: 2018
Publisher: UKERC
UKERC have submitted a reponse to the BEIS call for evidence on the future for small-scale low-carbon generation. This consultation sought to identify the role that small-scale low-carbon generation can play in the UK shift to clean growth by further understanding:
In our submission we responded to the individual points raised in the call, drawing on two streams of work undertaken as part of the UKERC research programme. The first stream concerns community energy, drawing primarily on data from the UKERC Financing Community Energy project. This project has collected and analysed data from a number of sources:
The second stream draws on a number of recent UKERC publications on electricity systems and networks :
Author(s): Bell, K., Blyth, W., Bradshaw, M., Green, R., Gross, R., Jansem, M., Ostrovnaya, A. and Webb, J.
Published: 2022
Publisher: UKERC
Author(s): Heaton, C and Milne, S.
Published: 2016
Publisher: ETI
Author(s): Cairns, I., Hannon, M., Braunholtz-Speight, T., Hardy, J., McLachan, C., Mander, S., Manderson, E. and Sharmina, M.
Published: 2020
Publisher: UKERC
This report presents a case study of Edinburgh Community Solar Cooperative, exploring how it financed the project against a backdrop of diminishing government support for grassroots sustainable development.
This report presents the first of four case studies of UK community energy organisations, exploring how these organisations have sought to finance their projects against a backdrop of diminishing government support for grassroots sustainable development.
Edinburgh Community Solar Cooperative (ECSC) is a Community Benefit Society (BenCom). Its objectives are a combination of environmental and social, with an explicit focus on reducing emissions, alleviating fuel poverty, improving energy security and promoting sustainable development education.
ECSC quickly settled on renewable power generation as a means of delivering this combination of environmental andsocial value. Today it operates 1.4 MW of solar PV panels on the roofs of 24 council-owned properties in Edinburgh, including schools, leisure centres and community halls.
Author(s): Cairns, I., Hannon, M., Braunholtz-Speight, Tim., Hardy, J., Mclachan, C., Mander, S., Manderson, E., Sharmina, M.
Published: 2020
Publisher: UKERC
Commencing in 2016, the Financing Community Energy project provides a comprehensive quantitative and qualitative analysis of the role of finance in the evolution of the UK community energy sector. This report presents the third of four case studies of UK community energy organisations, exploring how these organisations have sought to finance their projects against a backdrop of diminishing government support for grassroots sustainable development.
Gwent Energy (Wales) was formed in 2009 to deliver environmental benefit and cost savings to its local community. It aims to help local consumers save money on their energy bills through a combination of renewable energy, efficiency, storage and electric vehicle charging interventions, whilst simultaneously generating a surplus to fund local community initiatives.
Author(s): Speirs, J., Gross, R., Candelise, C. and Gross, B.
Published: 2013
Publisher: UKERC
The Paper considers first demand for indium and tellurium from the PV industry, now and in future. Whilst a range of scenarios exist for the role of PV in the global energy mix there is considerable agreement that the share of PV per se and thin film devices in particular is expected to expand considerably in the light of carbon abatement goals.
The paper then considers the supply of indium and tellurium. It provides a detailed review of the processes used to extract and refine them, and discusses the issues associated with producing these secondary metals which are extracted as trace elements during the production of primary metals such as zinc and copper. The Paper finds that there are considerable complexities associated with reported reserves and an absence of meaningful data on resources. Again, existing estimates of availability for the PV market are reviewed. This alsoreveals considerable variation within the literature and the use of a wide a range of assumptions upon which to base resource availability.
The paper concludes that there is no immediate cause for concern about availability of either indium or tellurium. PV occupies a small fraction of current markets and there is evidence of considerable potential to increase the extraction of both metals because a sizeable proportion of the material potentially available from primary metal extraction is not currently utilised. Moreover, there is potential to increase recycling of products containing indium or tellurium, for example from flat screens. However, the scale of the roll out of PV ~ vi ~ envisaged in some scenarios could imply a large expansion in the demand for indium and tellurium. There is no reason to believe that this is not feasible, however adequate data on reserves and resources do not exist. Resource estimates are not available and simplistic assumptions such as using current production or crustal abundance to estimate potential supply cannot provide any meaningful insight into future production. A scenario approach that links production to primary metals is appropriate. We conclude that considerable further research is needed to characterise indium and tellurium resources and the economic feasibility of expanding production.
Author(s): Speirs, J., Gross, R., Contestabile, M., Candelise, C., Houari, Y. and Gross, B.
Published: 2014
Publisher: UKERC
There is increasing concern that future supply of some lesser known critical metals will not be sufficient to meet rising demand in the low-carbon technology sector. A rising global population, significant economic growth in the developing world, and increasing technological sophistication have all contributed to a surge in demand for a broad range of metal resources. In the future, this trend is expected to continue as the growth in low-carbon technologies compounds these other drivers of demand. This report examines the issues surrounding future supply and demand for critical metals - including Cobalt, Gallium, Germanium, Indium, Lithium, Platinum, Selenium, Silver, Tellurium, and Rare earth Metals.
Author(s): Skea, J. and Infield, D.
Published: 2007
Publisher: UKERC
The following submission is preceded by a tabled summary of the current state of energy research and development and deployment in the UK, technology by technology. This is used as the basis for commentary on the technology potential of:
UKERC offers its views on the research funding landscape. Recommendations are highlighted in bold.
Author(s): Flett, G., Kelly, N. and McGhee, R.
Published: 2018
Publisher: UKERC
Energy System Demonstrators are physical demonstrations testing new technologies for low-carbon energy infrastructure.
A review of energy systems demonstrator projects in the UK was undertaken for UKERC by the Energy Systems Research Unit (ESRU) at the University of Strathclyde. The review encompassed 119 demonstrators and consisted of two phases: 1) the identification of demonstrator projects and 2) an analysis of projects and their outcomes.
The review defined an energy system demonstrator as “the deployment and testing of more than one technology type that could underpin the operation of a low-carbon energy infrastructure in the future”. Only demonstrators that post-date the 2008 Climate Change Act were included and that included a physical demonstration at one or more UK sites. 119 projects were identified that met the search criteria.
There were two phases of review activity. Phase 1 involved identification and documentation of demonstration projects, involving a systematic search to identify and record the details of projects. Phase 2 was a review of project outcomes and outputs, particularly end-of-project evaluations, covering technical, economic and social outcomes where available.
The review outputs (available here) are a final report summarising the findings, 119 demonstrator project summaries (the Phase 1 reports), 119 demonstrator output analyses (the Phase 2 reports) and a GIS (Geographic Information System) map and database showing the locations and project details of the demonstrators.
The final report, attendant project summaries and GIS data are intended to provide policy makers and funding bodies with an overview of the existing demonstrator “landscape”, enabling decisions on future demonstrator calls and the focus of those calls to be made with a clearer knowledge of what has already been done.
Author(s): Sunshot project
Published: 2012
Publisher: US Department of Energy
Author(s): Milou Beerepoot as lead author
Published: 2012
Publisher: International Energy Authority
Author(s): IEA
Published: 2014
Publisher: International Energy Authority
Author(s): IEA
Published: 2014
Publisher: International Energy Authority
Author(s): Braunholtz-Speight, T., Mander, S., Hannon, M., Hardy, J., McLachlan, C., Manderson, E. and Sharmina, M.
Published: 2018
Publisher: UKERC
It argues that, since its emergence in the UK in the late 1990s, community energy has grown through finding opportunities for smaller scale, decentralised energy activities in the UKs highly centralised energy system. The combination of development of renewable energy technologies, and the launch of the governments Feed-In Tariff Scheme (FITS) in 2010, produced a boom in the sector, especially around solar electricity generation.
Recent cuts to FITS rates and other policy changes place community energy at a crossroads. Some renewables activity will continue, but groups are exploring a wide range of activities, partnerships, and business models. We are engaging with the sector around outputs from our research, which include a survey and case studies, to co-develop recommendations and pathways for the future.
Author(s): Walker, A., Coonick, A., Greenham, N., Vinnicombe, K., Walls, M., Stojkovoska, B., Lucas, R., Klassen, A., Robertson, N., Dale, P., Agha, I., Warren, P., Tan, K.T., Bedford, S., Jones, L., Dobson, R., Thirkill, A., Burns, W. and Stoker, D.
Published: 2019
Publisher: REGEN
Regen has run the Solar Commission, a project that has been set up as part of the UKERC Whole Systems Network Fund.
Innovation and falling costs are leading to solar power playing an increasing role in the energy system. The UK has considerable scientific, technical and business experience in solar power and including technology, power storage, control systems, financing, and power purchase arrangements.
The role of the Commission has been to stimulate new thinking and encourage collaboration between academics, industry and system operators on the role of solar power in the energy system. The Commission examined areas where the UK could use its scientific and technical capabilities to play a leading role in innovation and industrial strategy opportunities in solar power.
The Commission was formed of industry leaders, academics and others and the Commissioners were responsible for investigating the future role of solar power in the energy system, considering the UK’s areas of strength in research and innovation in solar.
The findings will be used to inform and influence decision makers and leading players in the UK energy system and have been published in a non technical briefing at the House of Lords on 9 July 2019. The project engaged new voices and maximise female representation through collaboration with Regen’s Entrepreneurial Women in Renewables initiative.
This report presents the conclusions of the Commission, setting out:
A key finding of the Commission is that the UK has strong capabilities in many of the disruptiveinnovations transforming the solar PV market. The UK’s strengths in areas like innovative solar celltechnologies, storage, information and communication technologies and finance have sometimesbeen obscured by a focus on China’s domination of the manufacture of current generation crystallinesolar PV panels.
Author(s): Irvine, S.J.C.
Published: 2013
Publisher: UKERC
This UKERC Research Landscape provides an overview of the competencies and publicly funded activities in solar energy research, development and demonstration (RD&D) in the UK. It covers the main funding streams, research providers, infrastructure, networks and UK participation in international activities.
UKERC ENERGY RESEARCH LANDSCAPE: SOLAR ENERGY
Author(s): Compiled by Samantha Quinn, University of Edinburgh
Published: 2014
Publisher: UKERC
Author(s): Candelise, C.
Published: 2012
Publisher: UKERC
This working paper examines global and UK trends in cost trajectories of PV technologies, at module and system level, with the aim of:
Author(s): Hardy, J.
Published: 2008
Publisher: UKERC
Author(s): Hardy, J and Infield, D
Published: 2008
Publisher: UKERC
To meet the EU 15% renewable energy target will be a significant challenge for the UK. It is important to understand that reductions in the UKs total energy demand will produce proportional reductions in the renewable contribution required. Although self-evident, this simple fact is often overlooked. Indeed the UK has to date failed to achieve any reductions in energy use, in fact the reverse is true: energy consumption in the key sectors of electricity and energy for transport continues to rise steadily.
In addition to reducing the demand for energy, there will need to be a massive increase in the contribution of renewables to transport fuel (predominately biofuels), heat and electricity. This submission concentrates on renewable electricity because UKERC has core competency this area. In Table 1, below, UKERC presents an illustrative scenario for the contribution of renew
Author(s): Baker, P., Chaudry, M., Mitchell, C, Woodman, B., Jenkins, N., Strbac, G. and Hardy, J.
Published: 2010
Publisher: UKERC
Author(s): Tingey, M., Braunholtz-Speight, T., Hawkey, D., McLachlan, C. and Webb, J.
Published: 2018
Publisher: UKERC
We welcome the Welsh Government’s interest in locally owned renewable energy. Our response draws on a range of research undertaken by the Heat and the City research group at the University of Edinburgh, including a UK-wide study of local authorities and energy; and on the Financing Community Energy research project being led by Tyndall Manchester.
In our response we made the following general comments, before responding to individual points raised in the call:
Show more results