Abstract:
There are roughly 2000 heat networks in the UK; however, this remains a niche means of providing heating to homes and other buildings, serving less than 2% of UK domestic demand. The largest networks are in Nottingham and Sheffield but these are each less than 100km in total length and serve only a small fraction of their respective city’s heat needs. Heat networks are more widespread in a number of other countries (e.g. Denmark, Finland and Sweden); a mixture of cultural, climatic and economic reasons driving their adoption there. The decisions to pursue heat networks in these countries have been reinforced through a mixture of government support, community ownership models and taxation on alternatives such as gas.
Heat networks have the potential to deliver low carbon heat to a significant proportion of homes and businesses that would be difficult to decarbonise by other means. doing so requires the creation of new network infrastructure. For this to be effective, deployment will need to be targeted to suitable areas, catering predominantly to existing buildings in denser areas. this is a shift in focus for the heat network industry much of which is set up to serve new developments
Several key challenges need to be addressed: reducing the cost of heat networks (particularly the upfront cost of procuring and installing heat networks) through technology and process advances; building a supply chain to significantly increase deployment (reaching as much as 20x current levels, in a shorter time than current levels were reached); and encouraging adoption amongst industry and consumers. Transitioning large proportions of UK heat demand over to heat networks will also require managing interactions between other parts of the energy system which,depending on the approach taken, could involve electricity networks, gas networks, other heat networks and the power generation sector.Delivering this will require market and regulatory arrangements that:
Publication Year:
2016
Publisher:
ETI
Author(s):
Lidstone, L.
Energy Category
Language:
English
File Type:
application/pdf
File Size:
2270173 B
Rights:
Energy Technologies Institute Open Licence for Materials
Rights Overview:
The Energy Technologies Institute is making this document available to use under the Energy Technologies Institute Open Licence for Materials. Please refer to the Energy Technologies Institute website for the terms and conditions of this licence. The Information is licensed "as is" and the Energy Technologies Institute excludes all representations, warranties, obligations and liabilities in relation to the Information to the maximum extent permitted by law. The Energy Technologies Institute is not liable for any errors or omissions in the Information and shall not be liable for any loss, injury or damage of any kind caused by its use. This exclusion of liability includes, but is not limited to, any direct, indirect, special, incidental, consequential, punitive, or exemplary damages in each case such as loss of revenue, data, anticipated profits, and lost business. The Energy Technologies Institute does not guarantee the continued supply of the Information. Notwithstanding any statement to the contrary contained on the face of this document, the Energy Technologies Institute confirms that it has the right to publish this document.
Further information:
N/A
Region:
United Kingdom
Publication Type:
Subject:
Theme(s):
Energy Storage and Distribution
Related Dataset(s):
No related datasets
Related Project(s):
Related Publications(s):
An ETI Perspective - Low carbon challenges for UK energy networks
ETI Insights Report - UK Networks Transition Challenges - Electricity
ETI Insights Report - UK Networks Transition Challenges - Gas
ETI Insights Report - UK Networks Transition Challenges - Hydrogen
Enabling efficient networks for low carbon futures: Options for governance and regulation
Infographic - UK Networks Transition Challenges
Network Capacity - Barriers to Application of Multi-Terminal HVDC in the UK: WP2 Task 4
Network Capacity - Executive Summary
Network Capacity - Final Project Summary (Work Packages 1 & 2 a.k.a. WP1 Task 8)
Network Capacity - One Page Summary
Network Capacity - Performance of Onshore Multi-Terminal HVDC: WP2 Tasks 2 & 3
Network Capacity - Request for Proposal
Network Capacity -WP1 Task 2: Impact of Active Power Flow Management Solutions
Options Choices Actions - UK scenarios for a low carbon energy system