Abstract:
The specific objectives of the project are:
In-furnace NOX reduction technologies, and low NOX burners in particular, are considered mature for application to a wide range of coals. However their performance deteriorates with the more 'difficult' coals; i.e. low volatile coals (<10% daf) and those with high levels of moisture and/or high levels of inert materials. Such coals are being utilised increasingly in large export markets such as Eastern Europe, India, Asia and the United States. The problem with difficult coals is in achieving a stable performance with low emissions and efficient combustion. For example, the presence of high levels of moisture causes a delayed ignition resulting in the flame front not being stabilised within the burner throat as is normal with bituminous coals. Consequently, the burner is significantly less effective in controlling both NOX emissions and combustion efficiency. The presence of high ash compounds this problem.
The proposed project aims to develop and demonstrate a new burner type capable of firing a range of difficult coals, at full-scale in a single burner test facility. The development phase will employ advanced modelling techniques for investigation of the effects of ignition, devolatilisation and burnout behaviour for difficult coals. This will be combined with detailed coal characterisation data. Burner design and performance implications as a result of integrated CO2 capture options will be considered.
This profile contains information on the project's:Publication Year:
2005
Publisher:
Department of Trade and Industry
DOI:
No DOI minted
Author(s):
DTI
Energy Categories
Class Name:
Subclass Name:
Category Name:
Language:
English
File Type:
application/pdf
File Size:
491520 B
Rights:
Rights not recorded
Rights Overview:
Rights are not recorded within the edc, check the data source for details
Further information:
N/A
Region:
United Kingdom
Related Dataset(s):
No related datasets
Related Project(s):
Development of Advanced Burner Technology for Difficult Coals
Related Publications(s):
No related publications