Abstract:
The aim of this project was to understand how microgeneration might be deployed, and to explore policies to support investment by consumers and energy companies. The research was undertaken by an interdisciplinary team drawn from three universities: University of Sussex, University of Southampton and Imperial College. It was carried out in parallel with significant policy developments, notably the government Microgeneration Strategy, the Climate Change and Sustainable Energy Act and the wider Energy Review.
The research found that it was important for policy makers support a diversity of routes to microgeneration deployment, with incentives for both householders and energy companies. The project analysed three different models of microgeneration deployment to explore the possibilities and implications. This included 'Plug & Play' deployment by individual consumers wishing to assert their independence from established suppliers; 'Company Driven' deployment by incumbent energy companies that shift their focus towards the delivery of energy services rather than energy supply; and 'Community Microgrid' deployment as part of decentralised microgrids.
There are significant opportunities to build microgeneration into new construction developments. The Climate Change and Sustainable Energy Act is important since it encourages local authorities to set targets for this. In addition, the research found that it will be desirable to include flexible service areas and space (e.g. as cellars) in new buildings so that future developments in micro-generation and home energy automation can be accommodated. If sustainable visions for larger developments such as Thames Gateway are to be realised, strong intervention is likely to be required by government. This is because such developments are substantially different from the UK's current energy system. In the absence of strong intervention, an opportunity for the implementation of more pervasive local energy systems based on Community Microgrid models linked to new district heating networks could be lost. Energy regulation has a role to play here too. The Registered Power Zone scheme developed by the regulator, Ofgem allows electricity network companies to experiment with new network concepts and recover costs from consumers. So far, the rules governing this scheme have proved to be too restrictive to rebuild capacity for innovation with the electricity network companies.
Overall, the research showed that microgeneration can make a potentially powerful contribution to a sustainable energy future - in terms of carbon reductions and wider social impacts. Microgeneration can be both a result of ongoing changes in existing energy systems and the cause of potentially radical change. Our research has also underlined the interdependence of technical, institutional and social factors that inhibit or enable the diffusion of sustainable technologies. Technically, energy networks will have to be able to cope with two-way flows. Policies, regulations and institutions will need to change and to acknowledge that the distinction between energy supply and demand is not as sharp for micro-generators. Finally, consumers could have a new position in the energy system - whether as hosts of microgeneration installed by company or as 'co-providers' of their own energy services.
Publication Year:
2007
Publisher:
Economic and Social Research Council
DOI:
No DOI minted
Author(s):
Watson, W.
Energy Categories
Class Name:
Subclass Name:
Category Name:
Language:
English
File Type:
application/pdf
File Size:
465260 B
Rights:
Rights not recorded
Rights Overview:
Rights are not recorded within the edc, check the data source for details
Further information:
N/A
Region:
United Kingdom
Related Dataset(s):
No related datasets
Related Project(s):
Integrating micro-generation into energy networks and buildings
Related Publications(s):
Integrating Micro-Generation into Energy Networks and Buildings : Full Research Report