go to top scroll for more

System Requirements For Alternative Nuclear Technologies - Project Summary Report

This resource links to a document we hold in our system

Abstract:

Small Modular Nuclear Reactors (SMRs) are defined as nuclear power reactors with a maximum electrical output below 300MWe. They are generally considered to have distinct characteristics that make them different from conventional large reactors (LRs), such as modular design with pre-fabrication in offsite factories and the potential to deploy multiple reactors at the same site to form larger power plants. Many SMRs are also being designed as ‘integral’ units, where all key primary system components are integrated within a single pressure vessel and surrounded by a containment structure. A number of countries and companies are at different stages in the design and development of SMR technology.

If the technology is successfully developed, proponents claim that SMRs have the potential to offer a number of benefits to the UK’s future energy system. These benefits include the reliable provision of lowcarbon electricity and heat, flexible deployment and the opening up of additional sites closer to demand. There could also be economic benefits to countries that establish themselves at the forefront of technology development and export. But despite this potential, there are currently significant uncertainties relating to the future costs and performance of SMR technologies and the suitability of different designs for the UK.

The purpose of the ANT project was to frame the UK energy system requirements for a small generic nuclear power plant with an output of up to 300MWe. In practical terms this meant defining the technical and economic parameters for an SMR to be of value to the UK’s energy system in the future. The ETI appointed Mott MacDonald to undertake this work with Rolls Royce as subcontractor to Mott MacDonald.

The project was primarily aimed at understanding what SMRs will ultimately need to ‘achieve’ in order to be deployed in the UK. Whether or not the UK has a role in technology development is not directly relevant in this context, although some aspects of technology development were considered during the project.

Publication Year:

2015

Publisher:

ETI

Author(s):

Firggens, S., Doyle, G., Scott, I. Ashley, R., Dodd, D. and Goodfellow, M.

Energy Categories

Language:

English

File Type:

application/pdf

File Size:

1749032 B

Rights:

Energy Technologies Institute Open Licence for Materials

Rights Overview:

The Energy Technologies Institute is making this document available to use under the Energy Technologies Institute Open Licence for Materials. Please refer to the Energy Technologies Institute website for the terms and conditions of this licence. The Information is licensed "as is" and the Energy Technologies Institute excludes all representations, warranties, obligations and liabilities in relation to the Information to the maximum extent permitted by law. The Energy Technologies Institute is not liable for any errors or omissions in the Information and shall not be liable for any loss, injury or damage of any kind caused by its use. This exclusion of liability includes, but is not limited to, any direct, indirect, special, incidental, consequential, punitive, or exemplary damages in each case such as loss of revenue, data, anticipated profits, and lost business. The Energy Technologies Institute does not guarantee the continued supply of the Information. Notwithstanding any statement to the contrary contained on the face of this document, the Energy Technologies Institute confirms that it has the right to publish this document.

Further information:

N/A

Region:

United Kingdom

Publication Type:

Project Report

Theme(s):

Nuclear