

Enhanced

Efficiency

Steam Turbine

Blading – For

Cleaner Coal

Plant

Report No.
COAL R283
DTI/Pub
URN 05/658

March 2005

iii

by

A Fowler, D Bell and C Cao (ALSTOM Power)
R Fowler, P Oliver and C Greenough (CCLRC)
P Timmis (Cranfield University)

ALSTOM Power
Newbold Road
Rugby
CV21 2NH

Tel: 01788 531 777
Email: andrew.fowler@power.alstom.com

First published 2005
© ALSTOM Power copyright 2005

The work described in this report was carried out under contract as
part of the DTI Cleaner Coal Research and Development
Programme. The programme is managed by Mott MacDonald Ltd.
The views and judgements expressed in this report are those of the
contractor and do not necessarily reflect those of the DTI or Mott
MacDonald Ltd

iv

Project No 303: Summary Report: March 2005

We reserve all rights in this document and in the information contained therein.
Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

Page 1 of 62

Enhanced Efficiency Blading for Cleaner Coal Plant
Project Number 303

ALSTOM Power
CCLRC, Rutherford Appleton Laboratory
Cranfield University

Objectives of the Project
The aim of this project was to increase the efficiency of the short height
stages typically found in high pressure steam turbine cylinders. For coal fired
power plant, this will directly lead to a reduction in the amount of fuel required
to produce electrical power, resulting in lower power station emissions. The
continual drive towards higher cycle efficiencies demands increased inlet
steam temperatures and pressures, which necessarily leads to shorter blade
heights. Further advances in blading for short height stages are required in
order to maximise the benefit. To achieve this, an optimisation of existing 3
dimensional designs was carried out and a new 3 dimensional fixed blade for
use in the early stages of the high pressure turbine was developed.

The milestones for the project were defined around the following specific
objectives:-
• Increase the accuracy and execution speed of in-house C.F.D. codes.

• Develop new CNC techniques to efficiently produce model turbine blade
rows with highly curved 3-D blades.

• Optimise existing 3-D fixed blade designs to improve performance and
gain better understanding of how to deal with very short height blading.

• Produce a novel design for very short height fixed blades.

• Perform a model air turbine test on the new design of fixed blade to
assess the performance benefit gained from it.

Results of the Project
The work that CCLRC undertook on the ALSTOM C.F.D. code was very
successful. The 3-D flow solver code supplied by ALSTOM was analysed and
two methods of parallisation implemented. The OMP method of parallisation
is only suitable for use on “shared memory” multi-processor computers. The
MPI method of parallisation is suitable for use on “distributed memory”
computers, sometimes know as “Beowulf Clusters”, which tend to be
significantly cheaper to buy than large shared memory computers of similar
processing power. As a result of this work, ALSTOM Power have purchased
a Beowulf Cluster, and it has become the main workhorse of the
Aerodynamics Group.

The development of CNC techniques at Cranfield University has lead to one
of their existing CNC machines being converted into a 6-axis machining
centre capable of manufacturing a wide range of complex 3-D blade profiles
for testing in model turbines. Complete rings or disks can be manufactured
on this relatively small CNC machine by making use of an index turntable.

Project No 303: Summary Report: March 2005

We reserve all rights in this document and in the information contained therein.
Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

Page 2 of 62

ALSTOM Power developed an improved grid generation package for CFD
calculations. The use of “templates” means that different design ideas can be
calculated with as similar grids as possible in order to minimise the effects of
grid dependency. The use of templates also greatly increases the speed of
grid generation.
Optimisation of ALSTOM’s existing patented “controlled flow” design
philosophy lead to the development of an “evaluation matrix” for comparing
different design concepts. The use of the evaluation matrix has since been
further developed in other ALSTOM Aerodynamics design projects, and it is
intended to publish this method for ranking competing designs in the future.
The evaluation matrix was used to analyse a number of different concepts for
a novel very short height fixed blade for use in the early stages of a high
pressure turbine. The design that evaluated the best was manufactured and
tested in the model air turbine at ALSTOM Rugby.

The model turbine test of the very short height fixed blade design produced a
disappointing result, with the performance of the new blade being worse than
a prismatically stacked blade. Whilst the reasons for this are still not
understood, the result has led to changes in the way that such blades will be
designed in the future. It also provides a challenging test case for future CFD
code validation.

Project No 303: Summary Report: March 2005

We reserve all rights in this document and in the information contained therein.
Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

Page 3 of 62

 FINAL REPORT

Power September 2004
Steam Turbines

Enhanced Efficiency Steam Turbine Blading for Cleaner Coal Plant

1 Introduction

1.1 Objectives of the Project
The aim of this project was to increase the efficiency of the short height
stages typically found in high pressure steam turbine cylinders. For coal fired
power plant, this will directly lead to a reduction in the amount of fuel required
to produce electrical power, resulting in lower power station emissions. The
continual drive towards higher cycle efficiencies demands increased inlet
steam temperatures and pressures, which necessarily leads to shorter blade
heights. Further advances in blading for short height stages are required in
order to maximise the benefit. To achieve this, an optimisation of existing 3
dimensional designs was carried out and a new 3 dimensional fixed blade for
use in the early stages of the high pressure turbine was developed.

The milestones for the project were defined around the following specific
objectives:-
• Increase the accuracy and execution speed of in-house C.F.D. codes.

• Develop new CNC techniques to efficiently produce model turbine blade
rows with highly curved 3-D blades.

• Optimise existing 3-D fixed blade designs to improve performance and
gain better understanding of how to deal with very short height blading.

• Produce a novel design for very short height fixed blades.

• Perform a model air turbine test on the new design of fixed blade to
assess the performance benefit gained from it.

1.2 Participants in the Project
The participants in the project were ALSTOM Power Ltd (lead partner),
Council for the Central Laboratory of the Research Councils (CCLRC) and
Cranfield University.
CCLRC created a parallel version of an existing ALSTOM viscous flow solver
and assessed the optimum hardware to run the code on a cost per calculation
basis.
ALSTOM undertook an optimisation exercise on their existing, patented
“controlled flow” fixed blades that had already been shown to give a significant
performance increase at taller blade heights. The short height blades in the

Project No 303: Summary Report: March 2005

We reserve all rights in this document and in the information contained therein.
Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

Page 4 of 62

high pressure cylinder of a steam turbine have a lower efficiency than longer
blades due to the increased effect of “secondary flow” or endwall losses. A
novel 3-D design for use in early high pressure stage fixed blades was
developed.
The final measure of the success of the project was a model turbine test of
the novel design of the very short height fixed blade. In order to facilitate the
manufacture of components for model turbine tests, Cranfield University
developed a novel method of machining complete bladed rings or “blings”.

1.3 Activities of the Project
1.3.1 Analysis of Existing “GENESIS” C.F.D. Code (CCLRC)
The 3-D Viscous Flow solver “GENESIS” has been written and developed at
ALSTOM over a number of years. The present state of the code is such that
it is the primary tool used by ALSTOM for analysing new steam turbine
blading. Benchmarking has shown that the code is more accurate than any
other commercially available turbomachinery code currently on the market.
Execution time is a major factor of any 3-D C.F.D. calculation. CCLRC used
their experience gained from analysing other large computer codes to assess
what improvement in performance could be achieved simply by restructuring
the code. CCLRC then implement their findings.
1.3.2 Parallisation of “GENESIS” C.F.D. Code (CCLRC)
The next step in reducing the execution time of “GENESIS” was to run the
programme simultaneously on multiple processors. CCLRC again undertook
this work. As part of this phase of the program, CCLRC executed the code on
the range of computer facilities they have available to them to assess the
optimum hardware on a cost per calculation basis. The investigation included
the use of a large array of relatively small, cheap individual processors (a so
called “Beowulf Cluster”).
1.3.3 Improved Computational Grid Generation (ALSTOM)
The steep exit angle of the flow from an impulse steam turbine fixed blade is a
particular problem when trying to calculate the flow field. The skewness of
traditional “H-type” grids in the trailing edge region leads to increased
numerical errors in the solution and an inaccurate calculation of the efficiency
of the blade profile. In order to minimise these errors a different gridding
procedure is necessary that reduces the skewness of the grid in the trailing
edge region. The use of “O-type” grids was investigated, which are better
able to keep the computational mesh orthogonal to the blade surface.
1.3.4 Optimisation of Current Controlled Flow Designs (ALSTOM)
ALSTOM’s patented “controlled flow” fixed blade has been proved to work
both in the model air turbine in Rugby and in real applications at site. The
designs used at site are based on the model turbine results. However the
range of conditions found in site applications is much larger than can be
feasibly tested on the model turbine. Therefore many applications of
controlled flow are not fully optimised. By using the enhancements to the
calculation methods described above, it was possible to develop an
“evaluation matrix” for comparing and optimising different design concepts.
1.3.5 Development of Very Short Height Fixed Blades (ALSTOM)
The above mentioned model turbine tests have highlighted one shortcoming
of the current “controlled flow” design used by ALSTOM. The design is not

Project No 303: Summary Report: March 2005

We reserve all rights in this document and in the information contained therein.
Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

Page 5 of 62

applicable to the very short height blades typically found at the front of high
pressure steam turbine cylinders. The short height blades in the high
pressure cylinder have a lower efficiency than longer blades due to the
increased effect of “secondary flow” or endwall losses. The optimisation study
outlined above provided valuable insight onto how these very short height
stages should be designed. This led to a novel 3-D design for early high
pressure stages that was tested in the ALSTOM model turbine in Rugby.
1.3.6 Improved Methods for Producing Model Turbine Components

(Cranfield)
Cranfield University undertook to develop a technique for machining large
bladed rings and bladed disks (so called “blings” and “blisks”) for use in model
turbine test facilities. This involved using a six axis machine: three rotary
axes, three linear in the interests of accuracy and moderating the extent of
slide movements of the machine.
The practicality of producing large “blings” and “blisks” using high speed
milling was investigated. High speed milling of these components on a five /
six axis machine required different cutting speeds and depth of cut than is
given in standard data. It was also different from that which is optimum for
cutting individual blades, where the access to the blade surface allows the
use of short, stiff cutters. The investigation included high speed machining
trials to determine this data.
1.3.7 Model Turbine Test of Very Short Height Fixed Blade (ALSTOM)
A model turbine test of the novel, very short height fixed blade was carried out
to give a direct measurement of the benefit gained from using the new design.
1.3.8 Project Management and Reporting (ALSTOM)
The project was managed by a project manager appointed by ALSTOM.
Quarterly progress reports were submitted as well as this detailed final report.

Project No 303: Summary Report: March 2005

We reserve all rights in this document and in the information contained therein.
Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

Page 6 of 62

1 INTRODUCTION 3

1.1 Objectives of the Project ...3

1.2 Participants in the Project...3

1.3 Activities of the Project ...4
1.3.1 Analysis of Existing “GENESIS” C.F.D. Code (CCLRC) 4
1.3.2 Parallisation of “GENESIS” C.F.D. Code (CCLRC) 4
1.3.3 Improved Computational Grid Generation (ALSTOM) 4
1.3.4 Optimisation of Current Controlled Flow Designs (ALSTOM) 4
1.3.5 Development of Very Short Height Fixed Blades (ALSTOM) 4
1.3.6 Improved Methods for Producing Model Turbine Components
(Cranfield) 5
1.3.7 Model Turbine Test of Very Short Height Fixed Blade
(ALSTOM) 5
1.3.8 Project Management and Reporting (ALSTOM) 5

2 ANALYSIS AND PARALLISATION OF “GENESIS” C.F.D. CODE 9

2.1 Introduction ..9

2.2 Structure of “Genesis” ..9

2.3 Parallelisation Methods...11

2.4 Message passing implementation..12

2.5 Partitioning and load balancing..13

2.6 Parallel Performance ...14

2.7 Further Optimisation Work..15

2.8 Combining Message Passing and OpenMP Parallelism...............16

2.9 Conclusion ...17

3 IMPROVED COMPUTATIONAL GRID GENERATION 19

3.1 Introduction ..19

3.2 Improvements in Grid Generation ..20
3.2.1 Development & Application of Grid Templates 21
3.2.2 Improved Grid Quality through Application of Grid Smoothing
 22

3.3 Assessment of Grid Quality ..23

Project No 303: Summary Report: March 2005

We reserve all rights in this document and in the information contained therein.
Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

Page 7 of 62

3.4 Conclusions ...24

4 OPTIMISATION OF CURRENT CONTROLLED FLOW DESIGNS 25

4.1 Validation of in-house “Genesis” CFD code25

4.2 Calculations with moving blade tip leakage25
4.2.1 Generating the tip grid 25
4.2.2 Results of tip leakage calculation 26

4.3 Evaluation Parameters ..29

4.4 Evaluation Matrix ...29

5 DEVELOPMENT OF VERY SHORT HEIGHT FIXED BLADES 31

5.1 Introduction ..31

5.2 Secondary flows in short height blades ..31

5.3 Short height fixed blade designs..32

5.4 Evaluation of solutions..35

5.5 Conclusions ...36

6 IMPROVED METHODS FOR PRODUCING MODEL TURBINE
COMPONENTS 38

6.1 Introduction ..38

6.2 Blade Milling by 5 Axis Machining. ..38

6.3 6 Axis Machining..39

6.4 Machine Design..40

6.5 Control ..41

6.6 Software Modifications and Programming Approach...................41

6.7 Compressor Blisk ..43

6.8 Difficulties...44

6.9 Cutter Life ...44

6.10 Nozzle..45

6.11 Conclusions ...47

Project No 303: Summary Report: March 2005

We reserve all rights in this document and in the information contained therein.
Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

Page 8 of 62

7 MODEL TURBINE TEST OF VERY SHORT HEIGHT FIXED BLADE 48

7.1 Introduction ..48

7.2 Test rig details..48

7.3 Results ..49
7.3.1 Performance curves 49
7.3.2 Reaction levels 49
7.3.3 Traverse data 50

7.4 Conclusions ...50

8 SUMMARY AND CONCLUSIONS 60

8.1 Summary...60

8.2 Discussion of the Model Turbine Performance Results60

8.3 Further work ...61

8.4 Conclusions ...62

Project No 303: Summary Report: March 2005

We reserve all rights in this document and in the information contained therein.
Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

Page 9 of 62

2 Analysis and Parallisation of “GENESIS” C.F.D. Code
This section describes the current message passing (MPI) implementation of
the parallel version of the ALSTOM code “Genesis”. The overall structure of
the parallel version is given along with some more detailed notes on the
changes to particular subroutines and new functions. Performance figures are
given for the message passing code on a range of different machines. The
combination of OpenMP and message passing implementations is briefly
discussed along with possible future developments on the software.

2.1 Introduction
The message passing version of Genesis has been developed to allow the
code to run on Beowulf style systems which use distributed memory. In this
implementation the aim was to ensure that the results produced by the
parallel version are identical to those of the serial case. This should give
confidence in the parallel results, though may not give the best possible
performance. Further work could be done to give better overall performance
by changing the algorithms used, and some suggestions about this are given
in the conclusions.
Genesis is written in Fortran 90 and hence the parallel aspects of the code
also use this language. The message passing is built on top of the MPI library,
which includes a Fortran binding and is the most widely supported standard at
the present time. To allow for adoption of other message passing systems in
the future, a simple interface library between Genesis and the underlining MPI
functions has been used. This is described in a separate document.
A brief over view of the current structure of the code is given in section 2.2,
while the changes that have been made for the parallel version are listed in
section 2.4. Some discussion of mesh partitioning and load balancing
requirements are then given followed by some notes on the individual routines
that have been changed and added. Performance figures on a range of
machines are then given, while possible future optimisations are discussed in
the final sections.

2.2 Structure of “Genesis”
Genesis is a multiblock code with each mesh block a regular IJK mesh that
will have been fitted to the local geometry. At each block-block interface the
neighbouring meshes are currently conforming and overlap each other. The
overlap region consists of four points. However, each block is solved for only
the points “two in” from the edge. The first two points are only used as
boundary values. Hence each point is only evaluated in one block. Frequent
exchanges of boundary information are made between blocks, using routines
such as set_phi, which are called after each set of iterations of the linear
solver.
The first task in developing a parallel version of Genesis was an analysis of
the existing structure of the code and the amount of computational time spent
within each part. The table below shows the CPU analysis of a 3D test case
for all routines taking more than 2% of the total time.

Project No 303: Summary Report: March 2005

We reserve all rights in this document and in the information contained therein.
Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

Page 10 of 62

FUNCTION CALLS TIME %
Lisolv 289380 22035 32
Quicks 30618 7140 10
Calcp2 15000 6213 9
Mflux 15006 5851 9
Coeff 44706 3803 6
Set_phi 430134 3679 5
Calcte_c 14700 3125 5
Calcp_c 15000 2194 3
vist 14700 2130 3
Calcvz_c 15000 2065 3
Calcvy_c 15000 2046 3
Calcvx_c 15000 2006 3
Total 68275 91

The results show that, as would be expected, the most time consuming
routine is the one called LINSOL which performs an iterative solution of a
sparse system of linear equations using the line-SOR method. The other
routines are mainly associated with the assembly of the linear equations
which are to be solved. The main exception to this is routines such as
SET_PHI which exchange boundary data between mesh blocks. In fact
Genesis steps through mesh blocks one at a time, forming a local solution on
each. It depends on the exchange of block boundary data at the end of each
such pass for overall convergence to the global solution. This structure of the
code allows a straightforward approach to parallelisation at the block level
which can be exploited in both shared and distributed memory cases.
The solution process in Genesis can be described in general terms by the
following set of steps:
1.Data input: The routines read_genesis_input and read_cgns_input are

used to read the run data and the mesh data from the .prm and .cgns files.
The filenames are determined from command line arguments. Arrays to
store the input mesh and related data are dynamically allocated. If an initial
solution is to be calculated on a coarse mesh, the code attempts to delete
half the cells in each dimension at this point.

2.Initialization: The routine startup is called to set many initial values,
allocate further data space and determine the distances of grid points from
the nearest wall. This last calculation is quite computationally expensive of
itself, though in relation to the overall run time it is not significant.

3.Read existing solution: An existing solution from a previous run can be
read in. This section of the code is not exercised by the test cases
provided. No attempt has been made to implement this case in the parallel
code, though it should not be difficult to do so.

4.Perform other initial calculations: This includes calls to calc_m_iso and
calc_time_step which perform block based calculations, but also determine
global maximum and minimum values across the whole mesh. Set_init_fl_f
performs a number of iterations over the mesh blocks to set initial flow
values. These iterations are independent of each other, apart from
boundary data exchange (set_phi). Also calls to density and mflux are

Project No 303: Summary Report: March 2005

We reserve all rights in this document and in the information contained therein.
Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

Page 11 of 62

made which again are block based calculations, though the former is
followed by calls to set_phi.

5.Main iteration loop: This is where the vast majority of the Genesis run is
spent. Each iteration involves a call to the solver routine. Calls are also
made to mflux and to ypout. Various log files are written during the solution
process. If the two level mesh option is selected, then after a fixed number
of iterations the original fine mesh is reloaded and used for subsequent
calculations. This requires calls to the data reading subroutines again and
to routines to interpolate the existing solution onto the finer mesh.

6.Data output: After the required number of iterations have been made calls
are made to cgns_out and wall_press. The former saves the current
solution data to a CGNS file while the latter writes the pressures on
selected walls to a text file.

The solver routine, which performs most of the computational work, calls a
large number of routines itself. The basic flow is as follows:
 1 Calculate flux: Routines tot_flux and bl_flux are called to get flux related

values. These are blockwise calculations but require global sums across all
blocks. The latter routine writes flux data to a file.

 2 Loop over variables: For each state variable (velocity components,
density, etc.) do:
 2.1 Calculate associated terms on a block by block basis.
 2.2 Solve the resultant linear system on each block using a fixed number

of passes of a line solver routine.
 2.3 Swap block boundary values of related variables.
 2.4 Repeat until the residual is small enough or until a fixed number of

iterations have been made.
 3 Output monitor values: This includes printing values such as the mass

error and the location of the minimum pressure cell.
There are many other routine calls made from the solver and its descendants,
but these are mainly block based calculations. The details of mixing plane
calculations have not been examined and are not exercised by either of the
test cases available.

2.3 Parallelisation Methods
Given the existing structure and programming language used by Genesis
there are three approaches which could be used to develop a parallel version
of the code. These are:
1. OpenMP based parallelisation. Many Fortran90 vendors support the

OpenMP standard for parallelisation on shared memory machines. This
method is based on inserting directives into the code which instruct the
compiler to execute certain loops or code sections in parallel. As these
directives appear as comments to any compiler that does not support
OpenMP they are simply ignored in such cases. This means that, in
general, a single set of source files can be used for both the serial code
and the parallel code. The fact that all variables are shared in this model
makes the parallelisation task a lot easier as each processor has access
to all variables. The main problem is in identifying which loops to
parallelise and defining the status of variables within the selected loops. In
some cases an important loop is intrinsically serial and it is then necessary

Project No 303: Summary Report: March 2005

We reserve all rights in this document and in the information contained therein.
Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

Page 12 of 62

to see if algorithmic changes can be made to the code to enable
parallelisation. Shared memory machines are however expensive and
have limited scalability.

2. Message passing parallelisation. This approach is more flexible than
OpenMP, since it will work for both shared and distributed memory
machines. It is however much more difficult to implement since the
programmer is responsible for making sure that each processor has
access to all required data. The Message Passing Interface (MPI) is
emerging as the dominant standard here and is supported on virtually all
major parallel platforms.

3. High Performance Fortran (HPF). This is another parallelisation method
that again uses comment style directives to instruct the compiler as to the
best way to distribute the computation. Unlike OpenMP, HPF is designed
to work on both shared and distributed memory architectures. To do this it
includes directives not just to specify which loops should be parallelised
but also how the data should be laid out across machine memories. It is
particularly suited to computations on regular grids such as that used by
Genesis. It terms of complexity this method lies somewhere between the
OpenMP and MPI approaches. However at present there are few
compilers that fully support HPF. In addition those that do are known to
have somewhat variable performance and it is difficult to write code that is
both portable and efficient in this language.

Because of the portability and optimisation problems of HPF, this method was
not looked into further. A message passing implementation was seen as the
most useful approach to take as it would provide a version of Genesis that
would run on both shared and distributed memory machines.
It is becoming more common for Beowulf clusters to include shared memory
multi-processor nodes. On such systems it is possible to combine OpenMP
and MPI methods in a single code. This can be advantageous in some
circumstances. For example MPI distributed memory parallelism may be used
at high level for the mesh blocks within Genesis while OpenMP can be used
at lower level to parallelise individual loops on each shared memory node.
This may be particularly useful when there are only a limited number of mesh
blocks to distribute, as may be the case for Genesis.

2.4 Message passing implementation
The chosen method of parallelisation is one based on splitting the available
mesh blocks between processors. Each processor will then perform the
standard set of calculations on its set of blocks. The only modifications to the
code that runs on each processor are related to:
1. The initial data distribution. One processor, the master, will be responsible

for all file I/O. It will deal with reading the input data and sending it to the
other processors, the slaves.

2. The calculation of certain terms in the pre-processing phase. In particular
the determination of cell wall distances is most easily done on the master,
since all wall data is available at this point.

3. Calculation of global values over the whole domain. At various points it is
necessary to find quantities such as the minimum pressure over the whole
grid and this requires global operations between all processors.

Project No 303: Summary Report: March 2005

We reserve all rights in this document and in the information contained therein.
Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

Page 13 of 62

4. Exchange of boundary data for block interfaces where the two blocks are
assigned to different processors. When this occurs it is necessary to pack
interface data and send it to the remote processor, and in return receive
back data that must be placed in the local mesh block.

5. Collection and output of log files and final results. As the master deals with
all file I/O, the slaves have to send data to be written to file to the master.
This includes data such as wall pressure and the final solution. Getting the
data printed in the same order as the serial case makes the task a little
more complex.

These changes have been implemented by modifiying about 19 routines in
Genesis along with the addition of a number of routines explicitly related to
the parallelisation. As far as possible the original code has been retained to
avoid too great a divide between the parallel and serial versions.
All new routines have been written as Fortran 90 modules to allow explicit
checking of interfaces. Existing routines have been left with their existing
implicit interfaces.

2.5 Partitioning and load balancing
While the chosen message passing method is compatible with the existing
structure of Genesis, it has some limitations. The most important of these is
load balancing. Assuming a homogeneous cluster of processors, then it is
desirable to allocate the same amount of work to each of them. If it is
assumed that the amount of work is proportional to the number of cells in
each block, then we want to assign as close as possible the same total
number of cells to each processor. For the 3D test case supplied there are
only 6 mesh blocks, which instantly puts a limit of using at most 6 processors
in the parallel case. However the block sizes vary greatly and it is hard to go
beyond 4 partitions and maintain reasonable load balance. It may be that in
future the mesh generation process can be modified to take some account of
load balancing requirements. Larger simulations will generally require the use
more blocks and give more opportunity for using greater levels of parallelism.
The mapping of mesh blocks to processors is currently left up to the user who
must supply a file with the required information. In keeping with the existing
file usage within Genesis, this file must have the standard run prefix and a
suffix of the form partNN, for example 45in_mb.part02 would be the partition
information for run 45_mb using two processors. The format of the file is very
simple, it just contains the processor number of each block. Some example
partitioning files are included with the parallel Genesis software. One such is
the file 668n2_3d_ch.part03 which contains:

0
0
1
1
2
2

This just means that of the six blocks in this mesh, 1 and 2 are mapped to
processor 0 (the master), 3 and 4 to processor 1, while 5 and 6 go to
processor 2. The number of cells in mesh blocks 1 to 6 is: 42900, 39000,

Project No 303: Summary Report: March 2005

We reserve all rights in this document and in the information contained therein.
Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

Page 14 of 62

27300, 62400, 19500 and 46800. This gives a total of 237900 cells and hence
the best load balance would be when each processor has one third of this, i.e.
79300 cells. The above mapping actually gives 81900 cells to processor 0,
89700 to processor 1 and 66300 to processor 2.
The load balance in this case is not perfect, with the greatest load, on
processor 1, being about 13% greater than the ideal value of 79300. If we
ignore the communication costs of the parallel method and just look at the
lack of load balance, it can be seen that the best possible speed up on three
processors is now not 3.0 but rather 2.65. Another possible partition mapping
for three processors is:

0
0
1
2
2
1

This actually gives a rather better load balance, within 3.3%, and a maximum
possible speed up of 2.9 on three processors. While this partitioning is rather
better for load balance, it will lead to more communication. The reason for this
is that in the 3D example the mesh blocks have a simple linear topology:
block 1 connects only to block 2, block 2 connects to both 1 and 3, and so on.
With the second partitioning of blocks given above there are now three
interfaces between processors, where previously there were only two. This
may not be a significant problem when communication is very fast (e.g. for
shared memory machines) but may be expensive for a Beowulf cluster. A
simple test on a four processor SGI machine (with shared memory) showed
about 8% better performance with the second partitioning.
The current implementation of parallel Genesis has a restriction on the
partitioning that blocks with a periodic interface in common must be assigned
to the same processor. This is not a problem for the above 3D test case,
where no such blocks occur. It is a consideration for the 2D example
(45in_mb), where blocks 1 and 5 must be on the same processor, as must
blocks 4 and 8. This restriction may add to the difficulty in finding a good load
balanced partition with low communication requirements.

2.6 Parallel Performance
The parallel genesis code has been compiled and run on the following
machines:
Name Specification
Wulfgar 850MHz Athlon Classic Myrinet
Hrothgar 1.2GHz AthlonMP Wulfkit
Proton SGI Origin2000300MHz R12k
Columbus Compaq ES40500MHz EV6
Wiglaf 1.6GHz AthlonMP
Herodium, Ashkelon 1.6GHz Pentium P4 networked machines.

Project No 303: Summary Report: March 2005

We reserve all rights in this document and in the information contained therein.
Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

Page 15 of 62

These machines make use of several different MPI implementations, several
are based on the public domain MPICH, while others are proprietary versions.
This gives some confidence in the portability of the parallel implementation.
Results have been obtained for the 3D case 668n2_3d_ch which contains 6
mesh blocks, as mentioned in the discussion on partitioning. Due to the
limited number of blocks, and the large variation in size of these,
measurements have only been made using up to 4 processors. The partitions
files used were:

part02: 0 0 0 1 1 1 error= 8.2%
part03: 0 0 1 1 2 2 error=13.1%
part04: 0 1 1 2 3 3 error=11.5%

The errors quoted above indicate the extent of the load imbalance due to the
partitioning of the limited number of blocks and their sizes. This is ratio of the
ideal number of cells per processor to the worst case, using the block cell
counts mentioned previously. This limits the speed up that could be expected
if communication costs were negligible.
The following table shows the run times observed for 1000 steps of the 3D
case using between 1 and 4 CPUs:

Name 1 2 3 4
Wulfgar 8774 5028 3533 4120
Hrothgar 5594 3066 2180 2247
Proton 7132 3844 2650 2046
Columbus 2944 1660 1651 1253
Wiglaf 4358 NA NA NA

The best results in terms of speed up are seen on the shared memory SGI
machine, Proton, with a speed up of almost 3.5 on 4 processors. All the
machines except Columbus show good speed up of 2.5 to 2.7 on three
processors, considering that the load balance is not perfect and there is some
pre-processing work that has not been parallelised. It is disappointing that
both the Beowulf clusters show a drop in performance when using 4
processors, though with further optimisation work it should be possible to
extend the scalability. Larger test cases are also likely to show better scaling.
The speed up values for each of the above machines is shown in the table
below. Figure 1 shows a plot of these results as a function of number of
processor.

Name 1 2 3 4
Wulfgar 1.0 1.745 2.483 2.130
Hrothgar 1.0 1.825 2.566 2.490
Proton 1.0 1.855 2.691 3.486
Columbus 1.0 1.733 1.783 2.350

2.7 Further Optimisation Work
The current message passing implementation has been designed to give, as
close as possible, the same convergence as in the serial case. This means
that it exchanges block boundary data very frequently. While this is a fairly
cheap operation for the serial code, it can be quite expensive on a distributed

Project No 303: Summary Report: March 2005

We reserve all rights in this document and in the information contained therein.
Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

Page 16 of 62

memory machine. Obviously there is a need to exchange boundary data for
global convergence, but it may be more cost effective in the parallel case to
perhaps do more passes of the line solver before exchanging data. For
variables which converge quickly it may be more efficient to skip some of the
boundary exchanges across processors associated with these quantities.
There is considerable scope for merging global operations, such as the global
sums to find the residual in the solver iterations. While this is not too costly
with small numbers of processors, it can become important at higher levels of
parallelism. For 2D problems it may be useful to try and merge boundary data
exchanges since the message size can be very small in these cases. Larger
messages are usually more efficient.
These algorithmic changes need to be evaluated across a number of realistic
problems on computer hardware of interest. There is also the need to improve
load balancing and communication costs. One way to do this would be to
actually split the existing mesh blocks into better shapes. In the current cases,
where the mesh blocks have one to one connectivity, it should be possible to
transfer parts of blocks from one to another. While it would be necessary to
retain the rectangular topology, it should be possible to develop routines to try
and find both good load balance and minimal size of the interface between
processors.
The calculation of cell to nearest wall distance is currently performed only on
the master processor. By sending copies of all the necessary wall data to
every processor this could also be done quite efficiently in parallel. The only
drawback with this is the extra memory that will be required on all processors
for the wall data. With careful allocation it should be possible to reuse this
space for arrays allocated later.

2.8 Combining Message Passing and OpenMP Parallelism
OpenMP parallel directives have been included in some 16 of the most
computationally intensive routines for the serial version of Genesis. Loop
based parallelism was chosen, rather than applying directives at a high level
over the mesh blocks. This makes the OpenMP and message passing
methods more complementary in the case where there are only a few mesh
blocks to distribute yet the architecture provides a cluster of shared memory
nodes.
Most of the OpenMP changes are just straightforward additions of directives
outside of major loops. The only difficulty is to specify the state of loop
variables as private, shared, reduction, etc. It was assumed that problems of
importance will be 3D cases in selecting which are the most important outer
loops.
The only case where such simple changes will not work is in the line solver
lisolv. In this case the existing loops are strictly serial. Since this routine
accounts for a least a third of the serial CPU time, it was necessary to
introduce parallelism in some way. To this end the loops are reordered in a
simple red-black fashion: we first step through even k values in the outer loop,
then go through the odd values afterwards. This means that separate k
iterations are independent of each other. This will have some effect on
convergence, though initial tests suggest it is not very great. The explicit
colouring of the k loops means that this is only effective for 3D problems.

Project No 303: Summary Report: March 2005

We reserve all rights in this document and in the information contained therein.
Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

Page 17 of 62

When using both message passing and OpenMP together it may be
necessary to explicitly control the number of threads assigned to the master
and slaves. This is possible under OpenMP using the subroutine
omp_set_num_threads. In the current version of the code, gp_main in the
./omp_dir directory was changed to read two additional command line
arguments, the number of threads to use when just the master is active and
the number to use when the slaves are active.
To see how these could be used, consider running the MPI/OpenMP code on
a four processor SGI shared memory machine. If 4 processors are used in the
message passing side then it makes sense to only allow each slave to use
one thread. However, when the master is performing the initial calculation the
slaves are not active and 4 threads could then profitably be used. This can be
achieved by adding “4 1” at the end of the command line to run the combined
code, e.g.:

mpirun –np 4 P_GENESIS.exe /tmp/3d/ 668_3d 4 1
Similarly, if one wanted to run with just 2 message passing domains, then
each could make use of two threads, while the pre-processing step would
again take 4 threads.
On the SGI machine, Proton, it is found that the best performance is obtained
using the pure message passing code. The run time for the 4 processor case
was 2046s, as reported in the table in section 6. The combined MPI-OpenMP
version, with 4 partitions and using 4 threads for the master and 1 for each
slave, takes 2089s. In this case the pre-processing work is small, and the
times for the two versions are very close. Running the same problem with just
one domain, but 4 threads at all times, the elapsed time is 2426s, which is
significantly slower. On an SGI machine with more processors it would be
advantageous to use both OpenMP and MPI since there are not enough
blocks in the mesh.
Tests have also been made on the Beowulf cluster Hrothgar, described
above. Using three dual processor nodes, each running two threads for both
master and slave, gives an elapsed time of 1217s, which represents a speed
up of about 4.6 using six processors. Again the result gets slightly worse
when moving to four dual nodes. This may be partly due to the load balance,
though the communication load is likely to be the main problem. The speed-
up results for the OpenMP-MPI code are shown in Figure 1, along with the
pure MPI data.

2.9 Conclusion
Message passing and OpenMP versions of the Genesis software have been
developed. Reasonable speed-ups have been observed for the two separate
implementations on both shared memory machines and, for the former, on
distributed memory machines. Tests of the combined OpenMP and message
passing version of the code show this to be practical and to offer better
performance than either method on its own for some computer architectures.
The performance improvement from the combined version is anticipated to be
greatest for large calculations run on distributed memory computers. This will
be confirmed when the code is used for more realistic calculations later in this
“Cleaner Coal” project.

Project No 303: Summary Report: March 2005

We reserve all rights in this document and in the information contained therein.
Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

Page 18 of 62

There is still some scope for further improvements in performance of the code
with algorithmic changes and optimisation of the block partitioning. These fall
outside the scope of this “Cleaner Coal” project work.
The parallelised version of Genesis has been delivered to ALSTOM and
successfully installed on their computer system. It is already regularly used by
the Aerodynamics R&D group.

Figure 1: Speed up of 1000 steps of the 3D test case on a range of
machines. The second Hrothgar data refer to the combine MPI-OpenMP
version of the code.

Project No 303: Summary Report: March 2005

We reserve all rights in this document and in the information contained therein.
Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

Page 19 of 62

3 Improved Computational Grid Generation

3.1 Introduction
The generation of high quality structured grids for CFD analysis of blade flows
in impulse, high pressure (HP), steam turbine cylinders presents a significant
challenge, due to the characteristics of the fixed (stator) blade sections and
the typical layout of a stage. As illustrated by example in Figure 2, HP impulse
turbine stages have very short inter-stage gaps (measured in the axial
direction between the trailing edge of the fixed blade and the leading edge of
the adjacent moving (rotor) blade). This, combined with the acute exit angle of
fixed blades in impulse designs and the presence of matching periodic block
boundaries (shown in Figure 3), effectively constrains the grid generation
process in a manner that directly conflicts with the production of high quality
grid.

Traditionally, blade flow CFD analysis within the axial-flow turbomachinery
community has been performed on single block grids, and most commonly on
so called simple-H grids (straight gridlines in R-Theta direction). Whilst
simple-H grids may be acceptable for CFD analysis of axial flow compressors,
because of their low turning angle, the high level of skewness associated with
these types of grid when applied to impulse HP turbine blade domains gives
rise to well documented numerical errors in the subsequent CFD analysis.

Figure 2: Typical Layout for HP Stage CFD Computation (Air turbine
build 28)

STATOR
ROTOR

(Short Inter-StageGap)

Mixing PlaneFlow Direction

Project No 303: Summary Report: March 2005

We reserve all rights in this document and in the information contained therein.
Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

Page 20 of 62

To increase the flexibility of the structured grid generation process and
improve grid orthogonality, thereby improving CFD solution quality, a multi-
block grid approach has been adopted by ALSTOM Steam Turbines for
application in the analysis of blade flows.

Figure 3: Typical Fixed Blade Section (Impulse Design) – Acute Exit
Angle
(Section taken through the CFD domain shown in Figure 2)

3.2 Improvements in Grid Generation
As part of the Cleaner Coal project two developments have been made to
improve the existing multi-block grid generation process. The first is the
development and application of grid templates, which enables the generation
of “similar” grids from case to case. This is important because practical CFD

Flow Direction

Po

Po

Pi

Pi

Pi : Periodic inlet boundaries
(matching)

Acute Exit Angle

Project No 303: Summary Report: March 2005

We reserve all rights in this document and in the information contained therein.
Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

Page 21 of 62

computations invariably exhibit some degree of mesh dependence. The
production of “similar” grids from case to case, should therefore minimise the
risk of mesh dependence in CFD computations corrupting the comparison of
competing designs. The second development is the implementation of grid
smoothing, which is intended to directly improve the quality of the grid.
3.2.1 Development & Application of Grid Templates
Grid templates have been developed and implemented in ALSTOM Power
Steam Turbine’s grid generator for blade flow applications. These templates
are stored in files and contain grid data at specified radial stations in the grid
(normally the root, mid-height and tip section), which is sufficient to generate a
mesh for another geometry.

The grid templates store the following information:

 Grid block boundary type (simple-H, curvilinear-H, H-O-H)
 Blade inlet and outlet angles
 Normalised location of grid control nodes within the domain (shown in

Figure 4)
 Specification of grid distribution along edges of the block boundaries
 Setting for smoothing

The normalised location of grid control nodes, stored within the templates for
specific radial locations in the grid, is also used for interpolating the location of
corresponding control nodes at other radial locations. This leads to a
controlled development of grid block boundary structure away from the radial
sections defined in the grid template, even if the blade is strongly three
dimensional and exhibits a high degree of twist. In essence, this means that
the user need only specify the appropriate location of grid nodes at a few
radial locations within the grid in order to generate a high quality 3D mesh. It
is normally found that specification of the grid control nodes at root, mid-
height and tip is sufficient for this purpose.

Templates are automatically created for every case and can be loaded
through the graphical user interface at any time. An example application of
grid templates is shown below (Figure 4). In addition to the benefit of
generating similar grids from case to case, the application of grid templates
also reduces the overhead involved in generating a good quality multi-block
grid.

Project No 303: Summary Report: March 2005

We reserve all rights in this document and in the information contained therein.
Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

Page 22 of 62

Figure 4: Application of a Grid Template
(shows positioning of grid control nodes for a an example curvilinear-H
grid template)

3.2.2 Improved Grid Quality through Application of Grid Smoothing
In order to improve grid quality three additional modules have been introduced
in the grid generator, which effectively smooth the grid to reduce the
maximum grid skewness and the change in grid size in adjacent cells.

Four options are now presented to the user for grid smoothing:

1. None: This is the basic option – transfinite interpolation, without grid

smoothing.
2. Algebraic: This applies algebraic grid smoothing to the complete grid that

is originally generated through trans-finite interpolation.
3. Elliptic-BB: This solves a poisson system on a block-by-block basis

with stretching functions included in an attempt to maintain the grid
distribution defined at the block edges, throughout the grid block.

4. Elliptic-GL: This also solves a poisson system with stretching
functions, but is applied to the complete grid, rather than on a block-by-
block basis, in order to reduce the change in cell size of adjacent cells on
either side of a block boundary.

Both the elliptic and algebraic grid smoothing yield a tangible improvement in
grid quality in terms of the level of grid skewness and change in grid size in
adjacent cells, with the elliptic options generating the highest quality grid.
Unfortunately, with the present stretching functions, the distance to the wall of
the first cell is not rigorously controlled in the elliptic grid option, and the
resulting grid may not necessarily have the desired near wall grid distribution
which is required for correct application of the turbulence model used in the
CFD analysis. As a consequence, the preferred mode of smoothing at present
is the algebraic form. Further development of the elliptic grid generation option

Grid Control
Nodes

Before Loading
Template

After Loading
Template

Project No 303: Summary Report: March 2005

We reserve all rights in this document and in the information contained therein.
Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

Page 23 of 62

should, however, yield an additional improvement in grid quality, but this is
beyond the scope of the planned Cleaner Coal project. An example
application of algrebraic grid smoothing is shown in Figure 5.

Figure 5: Application of Algebraic Grid Smoothing

3.3 Assessment of Grid Quality
In order to asses the quality of mesh, the evaluation and presentation of grid
quality metrics has been introduced in the grid generator. These metrics
categorise cells as “good”, “acceptable” or “poor”, in terms of grid skewness
and grid aspect ratio. Contour plots are also provided in order to help the user
locate the poorest regions of the mesh. The user interface to the grid quality
metrics is shown in Figure 6.

The grid quality metrics are intended only to serve as a guide and help the
user locate particularly poor regions of mesh. The user should, however,
understand which regions of the mesh are most crucial to the CFD analysis,
since it is often better to trade poor grid in these crucial regions for worse grid
in regions of the flow where gradients are low.

Before Algrebraic
Grid

After Algrebraic
Grid

