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This report represents Deliverable D3.2, Battery State of Health Model. The purpose of this report is to describe the 

development and validation of an algorithm that quantifies battery ageing based on input parameters that can be either 

inferred from Electric Vehicle (EV) usage or measured on-board. A battery is assumed to reach its (automotive) end of 

life when its State of Health (SOH), defined as the ratio of its measured capacity to its capacity when new, decreases 

to 80%. Example outputs have been generated in order to show how the algorithm can be used to assess the impact 

of different levels of integration of EVs into the electricity grid on battery life (and thus vehicle economics). Note that 

the report does not aim to present a comprehensive analysis of all combinations (which can be carried out by model 

users), but rather to explain how the algorithm was developed. The work reported in this deliverable forms part of the 

“Vehicle Energy Management Systems and Technologies” work carried out in Stage 1 of the project. The separate 

spreadsheet (accompanying this report) provides more detail in the form of the Battery State of Health Model itself. It 

should be noted that the project team had difficulties delivering the full functionality specified for this deliverable. 

Consequently, this model provides a relatively high-level overview of battery degradation and state of health, which will 

be further developed during Stage 2 of the project.

Context:
The objective of the Consumers, Vehicles and Energy Integration project is to inform UK Government and European 

policy and to help shape energy and automotive industry products, propositions and investment strategies. 

Additionally, it aims to develop an integrated set of analytical tools that models future market scenarios in order to test 

the impact of future policy, industry and societal choices. The project is made up of two stages:  

• Stage 1 aims to characterize market and policy frameworks, business propositions, and the integrated vehicle and 

energy infrastructure system and technologies best suited to enabling a cost-effective UK energy system for low-

carbon vehicles, using the amalgamated analytical toolset.  

• Stage 2 aims to fill knowledge gaps and validate assumptions from Stage 1 through scientifically robust research, 

including real world trials with private vehicle consumers and case studies with business fleets. A mainstream 

consumer uptake trial will be carried out to measure attitudes to PiVs after direct experience of them, and consumer 

charging trials will measure mainstream consumer PiV charging behaviours and responses to managed harging 

options.
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Executive Summary 

This report forms part of Work Package 3, “Vehicle Energy Management Systems and Technologies” 
of the Consumers, Vehicles and Energy Integration (CVEI) Project. An Excel model and the 
accompanying user manual are delivered as part of Deliverable 3.2 along with this report. 

This report describes the development and validation of an algorithm that quantifies battery ageing 
based on input parameters that can be either inferred from Electric Vehicle (EV) usage or measured 
on-board. A battery is assumed to reach its (automotive) end of life when its State of Health (SOH), 
defined as the ratio of its measured capacity to its capacity when new, decreases to 80%. Example 
outputs have been generated in order to show how the algorithm can be used to assess the impact of 
different levels of integration of EVs into the electricity grid on battery life (and thus vehicle economics). 
Note that the report does not aim to present a comprehensive analysis of all combinations (which can 
be carried out by model users), but rather to explain how the algorithm was developed. 

A brief review of the academic literature is presented, discussing the principles underlying the ageing 
of automotive batteries. Battery ageing manifests itself in the form of capacity fade and resistance rise 
during storage and cycling. Whilst these processes are linked, the capacity fade was found to be the 
most significant contributor to battery ageing. The principal phenomena that underpin capacity fade are 
discussed in this report. 

Two principal components of battery ageing are explained in the report; calendar damage, degradation 
that proceeds with time; and cycling damage, degradation that is caused by charging and discharging 
the battery. Phenomena that underpin calendar ageing were found to be linked to the processes that 
occur on the anode (negative electrode) and do not strongly depend on the cathode chemistry (positive 
electrode). On the other hand, cycling ageing is a more complex process and can proceed at different 
rates depending on the cathode active material. Thus, cathode-specific coefficients for cycling ageing 
have been developed using information reported by battery manufacturers. 

The ageing algorithm described in this report is incorporated into the accompanying Excel-based tool. 
The extent to which different factors influence battery ageing are discussed in the report. Experimental 
evidence from peer-reviewed publications is presented to support the choice of inputs and calibration 
of the algorithm. The following operational parameters have been found to have the largest impact on 
battery degradation and were included in the model: 

• Temperature (strong impact on both calendar and cycling ageing – degradation increases with 
temperature) 

• state of charge (medium impact on calendar ageing – degradation increases when stored at 
high state of charge) 

• Time (high impact on calendar ageing – degradation increases with time) 
• Current throughput (high impact on cycling ageing – degradation increases with current 

throughput) 
• Depth of Discharge window (strong impact on cycling ageing – degradation is higher for cycling 

within a large depth of discharge window) 
• Rate of (dis)charge (limited impact on cycling ageing – increases with the rate of (dis)charge) 
• Cathode chemistry (strong impact on cycling ageing) 

Assuming a London temperature profile1, a typical lithium-ion battery will experience approximately 1% 
calendar degradation per year almost irrespective of the usage profile. The cycling ageing is in addition 
to calendar degradation and is heavily dependent on specific battery chemistry and cycling conditions. 
Assuming a typical travel distance of ca. 15,000 km per year, the cycling ageing can range from less 

                                                        
1 The maximum monthly average temperature is 23.7°C and the minimum monthly average temperature is 8.0°C 
in London based on the Met office data in 2015. 
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than 0.2% per year, for a PHEV used predominantly (90% of all travelled distance) in charge sustain 
mode, to ca. 1% per year, for a BEV. Thus, the lifetime of a typical BEV battery is close to 10 years (but 
can be substantially lower or higher depending on the specific usage profile and the battery chemistry) 
and the lifetime of a PHEV battery can easily exceed 10 years if the PHEV is used in a mixture of charge 
depleting (‘electric mode’) and charge sustaining modes. 

The effect of managed charging is modelled through changes in the state of charge and the rate of 
charge. The potential effect of other parameters is also discussed in the report. The impact of managed 
charging results in up to 12.5% decrease in a battery lifetime in the example cases presented, but 
equally may lead to an increase in battery lifetime if optimised with battery degradation in mind (by 
minimising the time spent at high SOC). The provision of Vehicle to Grid services (whereby power from 
the battery is fed back into the grid) is modelled through increased battery cycling within a specified 
Depth of Discharge. The effect of additional cycles causes up to almost 40% decrease in battery lifetime 
in the example cases discussed. The analysed case studies indicate potential entry points for EV 
integration into the electricity grid – for example providing delayed-start managed charging, or 
participating in V2G services, but limiting the power and the Depth of Discharge window when providing 
the services.   

Results of EV user surveys (for the BYD e6, Nissan Leaf, Tesla Roadster and Tesla Model S) are 
discussed in the report and are in line with the model predictions. However, it was concluded that results 
from EVs tested in a controlled environment are necessary to validate of the model. Hence, the model 
was validated with the battery degradation data collected from on-road EVs, specifically Nissan Leaf 
(BEV), Toyota Prius (PHEV) and Chevrolet Volt (PHEV). 

No single model available in the literature was found to satisfactorily predict all battery degradation 
phenomena and allow full flexibility in terms of battery chemistry and manufacturing technique. 
Therefore, this report also aims to clearly explain the caveats and limitations of the developed semi-
empirical modelling approach. The developed model intends to provide a sufficiently accurate battery 
lifetime prediction in order to estimate the feasibility of managed charging and Vehicle to Grid services. 
However, the model (like any other semi-empirical model) cannot be used to develop new battery 
chemistries and is not intended to provide sufficiently high accuracy to be applied in real-time SOH 
calculations on-board of a vehicle.  
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Acronyms 

Ah Ampere hours 
BEV Battery Electric Vehicle 
BMS Battery Management System 
CV EI Consumers, Vehicles and Energy Integration 
DNO Distribution Network Operator 
DOD Depth of Discharge 
EV Electric Vehicle 
FFR Firm Frequency Response 
INL Idaho National Laboratory 
LAM Loss of Active Material 
LCO Lithium Cobalt Oxide 
LFP Lithium Iron Phosphate 
Li  Lithium 
LLI Loss of Lithium Inventory 
LMO Lithium Manganese Oxide 
LTO Lithium Titanium Oxide 
NCA Lithium Nickel Cobalt Aluminium Oxide 
NMC Lithium Nickel Manganese Cobalt Oxide 
OEM  Original Equipment Manufacturer  
PHEV Plug-in Hybrid Electric Vehicle 
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RPM Revolution Per Minute 
SEI Solid Electrolyte Interphase 
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Note on terminology  

Thorough the report, ‘EV’ refers to a plug-in vehicle, which can be either a PHEV or BEV.   
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1  Introduction and scope 

1.1 ETI Consumers, Vehicles and Energy Integration project 
The overall aim of the Consumers, Vehicles and Energy Integration (CVEI) Project is to provide a 
detailed understanding of how the UK’s car and van markets and related refuelling infrastructure will 
need to evolve in the future in order to meet long term CO2 reductions from the transport sector. In 
particular, it aims to define internally consistent future scenarios which take account of changes in 
vehicle technologies and costs, consumer behaviour, policy and evolving commercial models. Given 
the likely role of electrified powertrains in the future light vehicle parc, a key focus of the project is the 
interaction between vehicles and the electricity system (in addition to hydrogen and existing liquid fuel 
infrastructure), both from a technical point of view and in terms of the roles for different actors at each 
part of the value chain such as electricity suppliers, grid operators and vehicle manufacturers. During 
Stage 1, the project has developed an overarching ‘analytical framework’, a collection of models and 
tools to quantify these future scenarios and assess their relative strengths. Stage 1 will also map 
potential configurations for ‘managed charging’ of electric vehicles to minimise negative impacts on the 
wider electricity system (and potentially to provide a net benefit). Some of these technical and 
commercial configurations will be tested in real-world vehicle and charging trials in Stage 2 of the 
project. 

This report forms part of Work Package 3, entitled Vehicle Energy Management Systems and 
Technologies. The battery pack is a key component of electric vehicles (EVs), and the development of 
its cost and performance attributes over time will have a critical influence on future uptake and use of 
electric vehicles. This component is also the link between EVs and the wider energy system and it has 
the potential to create new services that benefit several actors across the energy supply value chain 
(e.g. grid services aggregators, charging infrastructure operators, energy suppliers). For this reason, 
vehicle battery packs are the primary focus of WP3. Specifically, the scope includes a technology 
roadmap of battery costs and performance up to 2050, which provides a complete set of projections for 
use in vehicle uptake models in Work Package 1; secondly, it includes an assessment of Battery 
Management Systems (BMS), their current features and potential additional capabilities required to 
provide tighter integration with the electricity system (and hence opportunities for research and 
development to address these gaps); finally, the development of an Excel-based State of Health (SOH) 
model providing evidence on the impact of different battery use patterns on battery life. This report, 
Deliverable 3.2, covers the development of an Excel-based State of Health model. 

1.2 Objectives and scope of the work 
The purpose of this deliverable is to develop an algorithm to quantify the state of health (SOH) of a 
given battery from the data available while it is in use in a vehicle. SOH is a complex metric that reflects 
the ability of the battery to deliver the specified performance and takes into account its capacity, internal 
resistance, voltage and self-discharge. However, most commonly it is defined as the capacity at the 
time of the measurement as a proportion of the starting capacity [1]; this definition has been adopted 
for this report. The algorithms described in the report are incorporated into a simple model that simulates 
battery ageing based on a number of input parameters. The tool is also able to quantify the performance 
and cost impact of demand management strategies on automotive batteries. 

The developed algorithm uses parameters that can be monitored during the Stage 2 Trial. 

The scope of the model includes current lithium-ion battery technologies, but excludes future 
chemistries, such as lithium-air and lithium-sulphur. These chemistries have not yet demonstrated 
sufficiently long cycle life for automotive applications (refer to report D3.1 for more detail on the current 
state of development and projected performance). Therefore, if these technologies do enter the 
automotive market, they will have different cycling and ageing characteristics than the prototype being 
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tested in laboratories today. For this reason, a State of Health model cannot be parameterised and 
calibrated for future technologies. 

The report also aims to assess the potential impact of EV integration in the electricity grid on battery 
lifetime, allowing the impacts of the different demand management strategies to be tested and 
highlighting mitigation strategies to minimise impacts and maximise revenues for vehicle users, fleet 
operators and other relevant actors. 

Under Deliverable 3.2, the following deliverables have been developed: 

• An Excel based model of lithium-ion battery state of health that can quantify the performance 
and cost impact of demand management strategies  

• A user manual for the above model 
• A report laying out how the model equations have been derived and validated – this is the 

present report.  

1.3 Approach and structure of the report  
The report is structured into six chapters with Chapter 2 and Chapter 3 discussing the details of the 
modelling approach.  

Chapter 2 presents the methodology for estimating SOH, including the underlying ageing phenomena 
and the key parameters affecting the rate of degradation. It also includes a short review of battery 
degradation studies in academic literature. Battery degradation is discussed at a cell level in this 
chapter. The choice of model parameters is explained and the modelling results are validated against 
several literature sources. 

Chapter 3 is focused on the analysis of the results on a pack level and discusses the results of EV user 
surveys and on-road EV testing.  

Chapter 4 presents the summary of the results and identifies data gaps. The bibliography is included in 
Chapter 5.  

An Annex in Chapter 6 describes how the CVEIP Phase 2 trial data will be sued in the State of Health 
Model.  
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2  Development of the approach to model automotive battery ageing 

2.1 Underlying principles 
Battery ageing is a complex process that depends on multiple parameters and can proceed through a 
number of different pathways. To estimate the lifetime of a battery it is necessary to establish a link 
between measurable parameters and the underlying ageing mechanisms. This may also depend on the 
specific battery chemistry. At present, the positive electrode materials used in commercial lithium ion 
batteries mainly include LiMn2O4 (LMO), LiFePO4 (LFP), LiNixCoyMn1−x−yO2 (NMC) and 
LiNixCoyAl1−x−yO2 (NCA) and the most commonly used negative electrode material is graphite [2]. 
Ageing phenomena that dominate early-stage degradation in such batteries occur at the interface 
between the negative electrode and the electrolyte [2], [3]. 

Being outside of the stability window of organic electrolytes, the negative graphite electrode promotes 
electrolyte reduction during the first few battery cycles [4]. The accompanying side-reactions lead to the 
formation of inorganic lithium (Li) compounds (e.g. Li2CO3) [5]. As a result, a Solid Electrolyte Interphase 
(SEI) is formed between the negative electrode and the electrolyte. SEI effectively passivates the 
electrode and prevents further electrolyte reduction and corrosion of Li and the electrode. However, 
dynamic electrochemical conditions within the cell can destabilise the SEI and cause the corrosion of 
Li to proceed. This results in battery capacity loss and is termed Loss of Lithium Inventory (LLI). 

A common degradation mechanism that is more pronounced at later stages of a battery’s lifetime is the 
Loss of Active Material (LAM). Positive electrodes in lithium batteries are composite structures that 
contain lithium compounds (e.g. LiFePO4) as well as carbon additives that improve electrical 
conductivity. Carbon rearrangement within the positive electrode during the battery lifetime, can lead to 
deterioration of electronic contact and thus deactivation of parts of the electrode [6]. Additionally, certain 
electrolytes containing acidic species have a tendency to form highly resistive surface films on positive 
electrodes leading to further deactivation of the electrode [7]. 

Both LLI and LAM have a complex dependence on a number of battery parameters. Factors with the 
highest impact on degradation are (a) temperature, (b) state of charge (SOC) (c) charge/discharge rate 
and (d) charge/discharge window [8]. High temperatures can promote electrode decomposition leading 
to SEI growth and higher activity leading to resistive film formations on positive electrodes contributing 
to LAM. High SOC during storage promotes chemical reactions of electrode/electrolyte interface and 
leads to higher lithium loss. The speed of charge/discharge is typically denoted as C-rate2 and has a 
potential to influence the lifetime of a battery through kinetic effects. Charge/discharge window is 
typically referred to as Depth of Discharge (DOD) and affects electrolyte stability and structural 
robustness of the electrodes. In addition to LLI and LAM, multiple other phenomena have the potential 
to contribute to degradation in specific conditions, e.g. lithium plating leads to accelerated degradation 
at near-zero temperatures and graphite exfoliation degrades the negative electrode when the cell is 
operated at a high voltage. 

2.2 Approach to battery lifetime predictions 
Battery SOH can be estimated through (a) fundamental physics-based models or (b) semi-empirical 
models relying on experimental data. Development of an accurate ab initio model that considers all 
degradation effects is extremely challenging because of the complex relationship between battery 
characteristics and the ageing mechanisms. Not all of the battery degradation mechanisms are currently 
understood, further complicating the development of degradation models relying on the simulation of 
physical processes. The alternative approach is to predict degradation by using semi-empirical models 

                                                        
2 If the battery is fully discharged from 100% in one hour the C-rate is 1C. A C-rate below 1C means that the drawn 
current is below the rated capacity of the cell. Drawing a current at C-rate above 1C will cause the cell to discharge 
at a 1/C-rate fraction of an hour, e.g. 2C means the battery would be discharged in 30 mins. A Nissan Leaf charging 
at 50 kW corresponds roughly to a 2C charging.  
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that are parameterised using experimental results. This approach inevitably leads to a number of 
assumptions that may not always reflect real-life operational conditions. The main limitations of such 
models are as follows: 

• Use of averaged values for some inputs. This assumes that batteries are exposed to static 
conditions. 

• Extrapolation of single cell laboratory testing results to multiple-cell battery packs. This ignores 
thermal gradients and cell imbalances that may develop inside battery packs. 

• Extension of experiments conducted on specific cells to other cell sizes and manufacturers. 
Specifically, most of the academic literature reports the results for 1-3Ah cylindrical cells, while 
car manufacturers typically use >40Ah cells. Note that this limitation is addressed by calibrating 
equations using manufacturer’s data for larger cells – refer to Section 2.4.4. 

• Ignoring a number of parameters, such as the type of electrolyte, type of battery separators, as 
well as the presence of vibration during use. Each of these factors may have only a minor effect 
on degradation, but combined these may cause noticeable deviations from the expected result. 
However, it is not practical to include all of these parameters in a semi-empirical model, as each 
additional parameter multiplies the number of required experiments by at least a factor of 3. 

The semi-empirical modelling approach will be explained in detail in this report. Despite certain 
limitations, semi-empirical models offer a useful way of estimating battery lifetime using relatively simple 
inputs that can be measured on-board a vehicle by a standard Battery Management System (BMS) and 
do not require special equipment. For a realistic lifetime prediction, it is useful to separate battery 
degradation into calendar and cycling degradation. Calendar degradation refers to the degradation 
mechanisms that happens through time, even when the battery is not in use, while cycling degradation 
happens when the battery is used.  

Calendar damage was found to be proportional to the square root of time and is a function of 
temperature and SOC. Cycling damage depends on the current throughput  [8] and is a function of 
temperature, C-rate, DOD and the cathode chemistry. The impact of each parameter depends on other 
inputs, e.g. SOC may have a higher impact on battery life in EVs with low annual mileage, when 
calendar degradation exceeds cycling degradation, while the choice of cathode material may be more 
important in EVs with high annual mileage because this will have high impact on cycling ageing. 

2.3 Calendar ageing analysis and model calibration 

2.3.1 Calendar ageing equation 
A calendar ageing equation can be derived based on the assumption that degradation occurs due to 
lithium corrosion at the SEI layer, i.e. LLI mechanism due to SEI evolution as discussed in Section 2.1. 
Broussely et al. hypothesised that the corrosion rate depends linearly on the thickness of the SEI [5]. 
This leads to the following relation between time t and the amount of Li corroded x: 

𝒕 = 𝑨𝒙𝟐 + 𝑩𝒙 
The Arrhenius equation, a commonly used empirical relation that links reaction rates to temperature, 
suggests exponential dependence of reaction rate on temperature. Broussely et al. derived the following 
coefficients by combining this assumption with the experimental results (where T is the temperature in 
Kelvin): 

𝐴 = 𝑒
*++,
- .,* 

𝐵 = 𝑒
**01
- .,,.+ 

The capacity loss is obtained by expressing 𝑥 in terms of t from the equation above. As mentioned in 
Section 2.2, the capacity loss is dependent on the square-root of time. Although this type of dependency 
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was originally developed for LiCoO2 (LCO) batteries [5], it has been successfully tested and validated 
for other chemistries, including LFP [9] and NMC [10]. As long as the relationship describes LLI that 
occurs at the negative electrode, it is reasonable to assume that it will hold for all chemistries that use 
graphite electrodes. However, the A and B coefficients developed by Broussely et al. back in 2001 may 
not be accurate for characterising current state of the art cells. Therefore, the coefficients have been 
adjusted to achieve a good fit for current state of the art cells as shown in Figure 1, the adjusted 
coefficients are: 

𝐴 = 𝑒
4555
- .6*.6 

𝐵 = 𝑒
**01
- .,7 

 

Figure 1 Validation of the capacity loss curves with experimental data for calendar ageing at 
different temperatures obtained from state-of-art LFP cells by Sarasketa-Zabala et al. at 70% 
SOC. Adapted from [9] 

The experimental data in Figure 1 correspond to static temperature conditions. However, in order to be 
able to model degradation in real-life, the model should provide the facility to use variable temperature 
inputs. Extrapolation of the results of static experiments to the modelling of dynamic conditions 
introduces uncertainty. However, it is recognised that inaccuracies due to the use of average values for 
temperature may be greater than the uncertainty introduced by the use of dynamic values (although 
this cannot be quantified due to the lack of data). Therefore, temperature has been made dynamic in 
the model through the introduction of annual temperatures profiles using monthly average 
temperatures. 

2.3.2 Effect of the state of charge (SOC) 
E.ON has previously conducted research that analysed the sensitivity of PHEV batteries with NMC 
cathodes to the SOC, in the context of controlled and uncontrolled charging. High battery SOC was 
found to increase the degradation rate [11]. The influence of state of charge on calendar ageing was 
found to correlate with the graphite electrode potential in NMC batteries [10]. This suggests that this 
dependency is likely to be valid for other battery chemistries employing negative graphite electrodes 
(positive electrodes can be LMO, LFP, NMC, NCA, etc.)  

The model has been calibrated for SOC degradation using a recent study of LFP batteries [9]. Results 
of the study suggest an exponential relationship between SOC and battery lifetime, which is in line with 
the results of experiments with NMC batteries [12]. Both the LFP and NMC studies suggest that a 
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battery stored at 40°C with a SOC of 50% will have double the lifetime of a battery stored with a SOC 
of 90% [9,12]. Based on the results of these studies and the information available on the origins of the 
SOC effect on degradation, the SOH model assumes the same calendar ageing dependency on SOC 
for all modelled battery chemistries. 

Although the evidence presented in recent literature suggests that storage SOC is of secondary 
importance compared to storage temperature [13], [14], this effect cannot be ignored. SOC is therefore 
explicitly added into the calendar ageing equation as a pre-exponential factor. The modified equation is 
calibrated with the data from the same publication that was used for temperature calibration (Figure 1) 
for consistency. This is shown in Figure 2. 

 

Figure 2 Validation of the capacity loss curves with experimental data for calendar ageing at 
different SOC obtained from state-of-art LFP cells by Sarasketa-Zabala et al. at 40 °C. Adapted 
from [9] 

2.3.3 Limitations of the calendar ageing equation 
In summary, the caveats of using the developed relationship are: 

• The model has been validated using experimental results for temperatures equal to or higher 
than 30°C. There is no reason to expect noticeable changes in the relationship at lower 
temperatures (e.g. 15-25°C), however the data for temperatures below 30°C was not available 
from peer-reviewed publications used for the model calibration. Note that some battery 
manufacturer data is available at room temperature and is discussed in Section 2.4.4. 

• The model has been calibrated using the results of “static” experiments available in the 
literature, i.e. experiments where a particular type of battery has been tested varying only one 
degree of freedom, e.g. temperature, while keeping all other parameters constant. Results 
available from different sources have been combined in the model, allowing the model to take 
all of the key parameters into account. The limitation of this approach is the assumption that all 
interdependencies are linear. 

• The use of average inputs in the model for some parameters (e.g. SOC) reflects the fact that 
the equations have been parametrised using experiments where these inputs have been held 
constant. As long as a semi-empirical approach to modelling is used, the equations do not 
describe physical processes that lead to degradation, but instead reflect the observed response 
of the system to the testing conditions. It is therefore unclear whether dynamic testing 
conditions will result in a different response, compared to the static conditions used for model 
parameterisation. Average values of SOC are therefore used in the model. 
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• The calendar ageing mechanism of different types of batteries depends on the negative and 
positive electrode material type. However, calendar ageing was found to be dominated by the 
degradation of the negative electrode. As most automotive batteries use graphite for the 
negative electrode, no significant differences in calendar ageing between these chemistries is 
expected. However, it is recognised that different types of chemistries may lead to certain 
variations in lifetime that are not captured by the model due to the lack of available data. 

2.4 Cycling ageing analysis and model calibration 
Cycling ageing is more complex to model as it does not rely on a single dominant degradation 
mechanism. Cycling ageing depends on several independent variables that are related both to the 
external conditions as well as battery utilisation profiles [3]. Depending on the specific duty cycle, the 
cycling ageing scenarios can include any combination of LAM, LLI, kinetic degradation, increase in 
polarisation resistance and the formation of parasitic phases [15]. Semi-empirical cycle life models are 
designed to fit the observed degradation data, rather than to follow a particular degradation mechanism. 

In cycle models, the current throughput (Ah throughput) is chosen as the main parameter; this allows 
the model to quantify the effect of C-rate and DOD [16]. Typically, cycling ageing also considers the 
effect of temperature [17], [18]. The basic form of the equation for cycling ageing, that is used in this 
report, has been  proposed and validated for LFP batteries [16], as well as NMC batteries [19]: 

𝑄9:9;<	;>?? = 𝐵 ∙ 𝑒𝑥𝑝
𝐸C
𝑅𝑇

(𝐴ℎ)I 

Qcycle loss - capacity loss due to battery cycling, B – pre-exponential factor that depends on the C-rate, 
Ea – activation energy (for batteries with LFP cathodes this is equal to 31 500 J mol-1), R – ideal gas 
constant equal to 8.314 J K-1 mol-1, T – temperature in Kelvin and z – exponential factor [16].  

2.4.1 C-rate 
From the cycling ageing equation, it follows that if the battery is constantly cycled at high C-rates it will 
undergo more cycles in a given time and consequently will have a shorter life-span. Additionally, it was 
observed that cells that are charged or discharged at high C-rates degrade faster compared to their 
counterparts charged at slower rates, even if the number of cycles is equal in both cases. I.e. smaller 
total amount of current can pass through the cell before it degrades below a certain threshold if cycled 
at high C-rates. A closer examination of C-rate effect showed that experimental data obtained at 
different C-rates can be fitted if Ea decreased with increasing C-rate. Wang et al. suggested to modify 
the equation as follows to account for the additional C-Rate effect [16]: 

𝑄9:9;<	;>?? = 𝐵 ∙ 𝑒𝑥𝑝
−31700 + 370.3 ∙ 𝐶PCQ<

𝑅𝑇
(𝐴ℎ)I 

This equation has been successfully applied to model degradation of LFP batteries in plug-in hybrid 
electric vehicles (PHEVs) and battery electric vehicles (BEVs) by Bishop et al. who also suggested that 
it is applicable to other Li-ion chemistries with similar ageing mechanisms [20]. As previously mentioned, 
the coefficient B is linked to the C-rate. The original paper by Wang et al. provides the values of B for 
four different C-Rates as shown in Figure 3. These data points were linearly approximated to develop 
an explicit dependency of cycling ageing on C-Rate for the model delivered as part of D3.2. Note that 
linear approximation has a relatively low R-squared value due to a small number of experimental data 
points available. However, this translates to a minor uncertainty in terms of Qcycle loss as the overall effect 
of C-Rate factor is relatively small. 

At high C-rates, the rate of precipitates formation during the side-reactions at the electrolyte-electrode 
interface, including due the electrolyte decomposition, is increased. This directly contributes to faster 
SEI growth, thus increasing the internal resistances of the cell and perpetrating the LLI [21]. There is 
also an indirect effect on temperature, which increases due to both the increase in resistance and higher 
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rate of side-reactions. Therefore, there is a positive feedback between the C-rate and temperature. 
Thus, high C-rates can cause the increase in battery pack temperature with a passive air cooling and 
thereby affect the rate of degradation. For example, rapid charging at 50 kW was shown to increase the 
Nissan Leaf battery pack temperature by 6.5°C, and slow charging at 3.3 kW by 2.9°C [22]. The 
temperature was found to decrease back to ambient quickly after the charging event. Provided that the 
vehicle spends most of the time stationary, the effect of C-rate on temperature is relatively small over 
its lifetime. Furthermore, this effect is difficult to capture, because the increase in temperature will 
depend on the design of the pack and the cooling system. Therefore, the model developed as a part of 
this project does not aim to replicate this effect. 

 

Figure 3 Calibration of C-Rate dependant coefficient B using experimental data from [16] 

2.4.2 Temperature 
The cycling ageing equation has been validated at a C-rate of 0.5 for different temperatures as shown 
in Figure 5. Note that the cycling experiments are relatively short and do not include any rest periods, 
therefore the calendar ageing is not relevant for the results presented in Section 2.4. Experimental data 
in Figure 4 comes from the testing of commercially available 26650-type3 cylindrical cells [16]. It is clear 
that elevated temperature has a profound effect on degradation. This is in line with the discussion 
presented in Section 2.1. 

                                                        
3 Battery cell with the following dimensions: 26.5 mm diameter x 65.4 mm length. 
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Figure 4 Cycling ageing equation validation for LFP cells at different temperatures using 
experimental data from Wang et al (various DOD, 50% assumed for the model). Adapted from  
[16] 

2.4.3 Depth of Discharge (DOD) 
DOD is another recurring factor in the literature that causes batteries to degrade at different rates. There 
is no consensus regarding the exact origins of the effect of DOD on cycling degradation. One possibility 
is that SEI development and LAM are accelerated under high DOD conditions [3]. It is likely that a 
number of underlying processes are influenced by the DOD. It was experimentally demonstrated that 
high DOD causes faster cycle degradation in LFP cells, albeit the effect is less pronounced than the 
effect of discharge rate [16]. On the other hand, a recent study recognised the effect of DOD as more 
significant than the C-rate and showed that higher DOD may not necessarily be more detrimental to the 
cell [18]. Thus, the exact relationship between capacity fade and DOD range remains unclear. However, 
most publications report an increase in degradation as the DOD increases [10], [17], [23]–[25]. The 
effect of DOD on degradation is most pronounced when the battery is cycled either at very low or at 
very high DOD - cycling at high DOD leads to higher degradation compared to cycling at low DOD. 

The data used for modelling the effect of DOD is based on battery cycling around the SOC=50%. In 
practice, the EV batteries will not be cycled around 50%, so it is assumed that the effect of cycling 
around the SOC=50% is the same as the effect of cycling around any other SOC, provided the absolute 
DOD window stays the same. The data used for model calibration suggests the lowest degradation 
occurs at 5% DOD, in line with the commonly observed trend, and the highest degradation at 30%. It 
also reports that the degradation rate decreases when the DOD is increased beyond 30%, but it 
nevertheless remains higher than at 5% DOD [18].  Therefore, the model assumes three separate 
cycling ageing regimes: (a) for DOD below or equal 5%, (b) DOD between 5% and 30%, and (c) DOD 
above 30%. Note that the effect of DOD is modelled by varying the exponential factor z (see equation 
in Section 2.4.1). 

Introduction of discrete DOD bands for cycling ageing models is not uncommon. This approach is used 
in the academic literature to reflect the non-linear DOD relationship with Ah-throughput [18], [26]. 
Calibration of the model for 0-5%, 5-30% and 30-100% bands is performed with experimental data 
obtained by Sarasket-Zabala et al. as shown in Figure 5 [18]. Note that the value of the factor z, which 
is around 0.5, suggests an almost square root dependence on Ah throughput. 
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Figure 5 Validation of the cycling aging with experimental data from state-of-art LFP cells 
(cycling at 1C in all cases). Adapted from [18] 

2.4.4 Chemistry 
The cycling ageing modelling methodology is based on the results for LFP cells. The same form of 
equation was shown to be applicable for NMC\LMO chemistry and has been suggested to be applicable 
for NCA chemistries [10], [17], [18]. Although the form of relationship is expected to be the same for 
these chemistries (LMO, NMC, NCA), the equation still needs to be calibrated with the experimental 
results for each chemistry. Note that LMO electrodes have poor cycling life and therefore are typically 
blended with other materials (e.g. NMC) to achieve a reasonable cycling life [27], [28]. 

Battery cell manufacturers often publish cycling degradation of their batteries at room temperature – 
typically 20-23 °C and constant 80-100% DOD. Manufacturer’s data at these conditions is shown in 
Figure 6.  A good fit of modelled degradation is demonstrated for LFP cells manufactured by BYD. 
Manufacturer’s data in Figure 6 suggests that batteries with NMC and NCA cathodes degrade at a 
faster rate than LFP batteries. An additional chemistry-specific factor α is introduced to the model to 
account for battery chemistry, and specifically for the type of cathode. The cycling equation is modified 
as follows to account for the degradation of different cathodes: 

𝑄9:9;<	;>?? = 𝐵 ∙ 𝑒𝑥𝑝
−31700 + 370.3 ∙ 𝐶PCQ<

𝑅𝑇
(𝐴ℎ)IRS∗UVU 

The value of α is calibrated by fitting the model results to manufacturers’ data for BYD (LFP), Kokam 
(NMC) and Saft (NCA) cells, as shown with grey lines in Figure 6 [29]–[31]. The values of α are found 
to be as follows: 0 for LFP, 0.037 for NCA and 0.057 for NMC. The fact that the equation coefficients 
developed for cylindrical LFP cells fit the data for larger pouch-type BYD cells suggests that the size of 
cells does not noticeably affect the degradation. However, this direct comparison should be made with 
caution as no unambiguous evidence to prove this statement was found in academic literature. 
Modelling results were validated against data for high capacity cells suitable for automotive applications 
in Figure 6. 
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Figure 6 Validation of the modelling results with manufacturer’s data for BYD (LFP), Kokam 
(NMC) and Saft (NCA) cells [29]–[31]. All data is at room temperature 

2.4.5 Limitations of the cycling ageing equation 
The limitations of the cycling ageing equation include some of the limitations already described for the 
calendar ageing equation (refer to Section 2.3.3 – specifically the uncertainty due to the use of average 
values (C-rate during charging and discharging)). Equally, the fact that the model is calibrated by the 
experimental data for static DOD experiments means that the effects that may be introduced by dynamic 
DOD conditions are not included. Operation under dynamic DOD conditions was shown to lessen 
degradation, but as the nature of this effect remains unclear this is not included in the model [18]. 
Additionally, it should be noted that the literature review revealed a significant uncertainty in the depth 
of discharge effect on degradation rate. While our analysis has made use of the most reliable data, an 
inherent uncertainty is associated with this relationship. 

Lithium metal plating is known to occur at near-zero temperatures when cycling at high currents [32]. 
This result in the capacity loss due to the decrease in the loss of active material. There is little 
experimental data on degradation loss at near-zero temperatures preventing the model calibration for 
this. At the same time, extensive lithium plating is unlikely to occur in commercial EV battery packs 
because the OEMs either install internal battery heaters to prevent operation at near-zero temperatures 
or limit the current at low temperatures. It should be noted that as the operating temperatures approach 
near-zero values, degradation that is not captured by the developed algorithm might start to occur. 

The degradation rate may vary between manufacturers even for identical chemistries. An example of 
the observed variations in the degradation of LFP cells produced by different manufacturers is shown 
in Figure 7  [29], [33]–[35]. Partly the difference can be attributed to the manufacturing quality and the 
use of proprietary technologies. Equally, this could be due to a number of other factors that are 
challenging to parametrise such as battery pack size, choice of the electrolyte, etc. These are not 
directly captured by the model. Larger pouch cells are known to have higher current and lithiation 
inhomogeneity that may affect degradation. These effects need to be considered in a physical cell 
model and are beyond the capability of the developed algorithm. However, in the case of the LFP 
chemistry the model has been calibrated using the data for cells that were designed for automotive 
applications. Also, the degradation of these batteries is approximately in the middle of the observed 
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degradation spectrum in Figure 7 (BYD data). The model also includes a functionality to specify a 
custom chemistry-specific factor, which could be used to calibrate the model with the data for any 
specific cell. 

 

Figure 7 Cycling degradation reported by different manufacturers of LFP batteries for the same 
conditions – room temperature, 100% DOD and 1C [29], [33]–[35] 

Chemistry-specific factors have been calibrated at room temperature and 100% DOD as the 
manufacturers’ spreadsheets report degradation for these conditions only. It is therefore assumed that 
the relationship holds for all other conditions. It is recognised that batteries with different chemistries 
may respond slightly differently to changes in C-rate, DOD and temperature, due to second-order 
effects that are not captured by the model. 

Finally, batteries in the automotive industry often use positive electrodes with mixed chemistries (e.g. 
LMO\NCA for Nissan Leaf or LMO\NMC for Chevrolet Volt) [36]. Experimental data for cells with these 
particular chemistries is often not publicly available. Equally, the geometry of cells used in EVs varies 
– e.g. pouch cells are used in Nissan Leaf, prismatic cells are used in Mitsubishi i-MiEV and cylindrical 
cells are used in Tesla Model S and X [36]. Although the model was not calibrated for these factors on 
a cell level, equations have been validated against the on-road data for EVs as discussed in Section 
3.2.3  

2.5 Overview of the parameter space searched 
A number of articles have reported experimental results for calendar and cycling ageing. Some of these 
have also developed or/and parameterised semi-empirical models based on these results. Although 
studies on LFP chemistry dominate the literature, other chemistries, most notably NMC and its mixture 
with LMO are also well covered. Table 1 provides an overview of the scope of the reviewed academic 
publications. 
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Table 1 Summary of the key publications discussed in this report showing the scope of each 
article in terms of degradation mechanisms and studied parameters 

Cathode chemistry 
[anode=graphite 
unless specified] 

Calendar life Cycle life Paper 
reference 

T SOC T DOD C-Rate General 
mechanism 

 

LFP x      [7] 
LFP x x x x x  [8] 
LFP x x     [9] 
LFP x x     [13] 
LFP   x x x  [16] 
LFP   x x x  [18] 
LFP     x  [23] 
LFP, LMO, NMC (LTO 
anode)      x [2] 

LFP, LMO, NMC, NCA      x [37] 
NCA     x  [21] 
NCA   x x   [38] 
NMC x x x x   [10] 
NMC   x    [19] 
NMC/LMO x x x x x  [39] 
NMC/LMO x  x x x  [40] 
NMC, NCA      x [6] 

 

2.6 Approach to modelling the effect of managed charging and grid 
services on battery degradation 

EVs can interact with the electricity grid on a few levels as shown in Table 2. The table presents the 
basic characteristics and parameters in terms of how often the response is required/provided, what type 
of incentive or price signal is provided (i.e. Time of Use tariffs or direct payments), what reliability of 
response is expected and whether they do or do not change with time. It also differentiates between 
integration through charging managed through time of use (ToU) tariffs (typically through the electricity 
supplier) and integration through the provision of grid services. In practice, grid services are a form of 
managed charging for EVs, the difference being in the contractual route and the level of automation. 
Grid services refer to balancing mechanisms National Grid contracts to generators or large users 
(generally through aggregators for the latter), such as frequency control, Short Term Operating 
Reserve, etc.  
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Table 2 EV system integration levels 

Category  
User-managed charging   Supplier-managed charging - grid 

services 

Static  Dynamic  Grid to Vehicle 
(G2V) 

Vehicle to Grid 
(V2G) 

Frequency daily/always on demand, generally with requested 
minimum availability windows 

Payment reduced electricity bill direct payments or reduced electricity bill 

New contract in 
place? 

No, usual relationship with 
electricity supplier (and/or via 

OEM app) 

Contract with aggregator that in turn has a 
contract with National Grid (or a DNO) or no 
contract seen by end user e.g. interface with 

car OEM or electricity supplier only 

Implementation 
options 

Static Time of 
Use tariffs 

Dynamic Time 
of Use tariffs 

Dynamic Direct Control, with EV owners 
having control over windows of time offered4 

Indirect management (i.e. user 
free to respond or not to price 

signals) 

Control time, 
duration and/or 

charge rate 

As Grid to Vehicle 
plus power from 

battery is fed back to 
the grid 

 

2.6.1 Managed charging 
Managed charging and Grid to Vehicle (G2V) interactions do not increase the number of cycles but can 
alter the battery usage profile primarily by: 

a) affecting the average state of charge (SOC);  
b) increasing the frequency of charging/discharging events (at equal Ah throughput, more 

stop/start of the charging or discharging); 
c) changing the rate of charge/discharge.  

The effect of SOC on calendar ageing is discussed in Section 2.3.2 and is explicitly included in the 
model. Managed charging strategies have the potential to either increase or decrease the average 
SOC. Assuming the average battery SOC increases from 50% to 90%, it would result in ca. half the 
shelf life at typical conditions as discussed in Section 2.3.2. On the other hand, no evidence in the 
literature was found to support the assumption that the frequency of charging (that does not change the 
total energy throughput) can affect the battery degradation rate. Consulted battery experts (Dukosi) 
confirmed that a battery is designed to stop/start charging (this is in effect what happens while driving) 
and that neither the controls nor the cells are affected by this.  

An increase in charge/discharge rate was found to affect the battery degradation as detailed in Section 
2.4.1. The model developed as a part of Deliverable 3.2 allows the user to change the rate of 
charging/discharging. However, the effect of C-rate was found to be relatively minor: switching from 3.3 
kW charging to 50 kW charging could cause ca. 5% decrease in the lifetime of a battery (detailed in 
Section 3.2.1) and therefore the effect may not be prominent in the case of managed charging. 

                                                        
4 Although National Grid controls the window of time for grid services, it is expected EV users will be given the 
option by aggregators to opt out on certain day/times. It will be for the aggregators to manage their ability to respond 
to National Grid demands, e.g. through enrolment of a large number of EVs and incentives for EV owners to 
participate in managed charging. 
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An analysis of a few typical cases of managed charging strategies has been conducted assuming a 
long-range PHEV with the parameters described in Table 3. The aim of this exercise is not to provide 
an exhaustive list of all possible scenarios for managed charging, but rather to show examples of 
possible managed charging strategies and their impact on a PHEV battery lifetime. In Stage 2 of the 
CVEI project, the in-use data obtained from the trial will be used in the SOH model to study the effects 
of managed charging on battery lifetime and to quantify the associated economic effects. 

Table 3 Model inputs for testing different scenarios for managed charging and providing 
ancillary grid services by a long-range PHEV 

Input parameter Value Unit 
Start date 01/09/2016  
Battery cathode chemistry NMC  
Total battery pack capacity 16.5 kWh 
Battery pack voltage 355 V 
Ambient temperature profile London5  
Average C-rate during driving 1  
Average SOC over total capacity 70 % 
Charging power (outside of V2G service) 7 kW 

Travel profile6 
User-defined 
(100 km/day)  

Percentage of travel in full electric mode 70 % 
Battery usage in EV mode 0.16 kWh/km 
Battery usage in charge sustain mode 0.005 kWh/km 

Managed charging is likely to result in delayed charging, i.e. charging does not start immediately after 
the vehicle is plugged-in. This would decrease the average SOC and lead to extended battery life as 
demonstrated by Case 1 in Table 4. However, managed charging has also a potential to increase the 
average SOC, e.g. if the EV users change their behaviour in response to managed charging and plug 
in the EV earlier than normal. If the charging begins immediately after the vehicle is plugged in, the 
average SOC can increase as assumed in Case 2 in Table 4. This could have a noticeable effect on 
the battery lifetime and the user would need to be ‘compensated’ for this additional degradation, as 
shown in Table 4. Equally, managed charging can lead to an increase in the charging rate, which may 
also decrease the battery lifetime, as demonstrated by Case 3 in Table 4. However, if the battery lifetime 
is not decreased below 12 years, no penalty is assumed in the model. This reflects the fact that 12 
years is the average lifetime of a light duty vehicle in the UK, as inferred from the data available from 
the Department for Transport (DfT). Finally, Case 4 represents a scenario where both the SOC and C-
rate increase due to managed charging. Annual compensation of £60-94 would be required in this case 
depending on the base year for the battery costs. Battery pack costs for 2015 and 2020 base years 
developed by Element Energy under D3.1 were used (assuming the base case scenario) [41]. 

  

                                                        
5 Met Office monthly temperatures for London in 2015 (monthly average max: 23.7°C, monthly average min: 8.0°C). 
6 A typical mileage (can be changed in the model) will depend on the EV usage and will be refined in stage 2  
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Table 4 Summary of the case studies for managed charging 

Input parameter Baseline Case 1 Case 2 Case 3 Case 4 
Relative increase/decrease in SOC (%) - -10 10 0 10 
Average SOC (%) 70 63 77 70 77 
Relative increase in charging rate (%) - 300 0 300 300 
Average C-rate during charging 0.42 1.7 0.42 1.7 1.7 
Years until SOH reaches 80% (years) 13.0 13.5 12.0 12.5 11.5 
Required annual payment to “break 
even” (£/year) – based on 2015 battery 
pack cost 

N/A - 64 0 94 

Required annual payment to “break 
even” (£/year) – based on 2020 battery 
pack cost 

N/A - 41 0 60 

2.6.2 Vehicle to Grid 

Vehicle to Grid (V2G) services were found to have a potential to significantly impact battery lifetime 
through the increased number of cycles. Thus, the model includes the functionality to quantify the 
additional battery degradation costs due to ancillary grid services. The additional degradation is 
estimated by the model and additional costs for EV users are then calculated by combining these results 
with the battery cost projections. Typical grid service values (i.e. those received by the asset or 
aggregator providing the service) can then be compared with potential cost to EV users from additional 
battery degradation. 

The impact of ancillary grid services on battery degradation have been analysed using several case 
studies. The model input parameters used for all cases are the same as the ones used for analysing 
the managed charging strategies and are summarised in Table 3. Under these conditions, the battery 
is estimated to have a lifetime of 13 years if no grid services are provided. Based on the National Grid’s 
current contracted services, EVs that provide grid services must be available to charge or discharge for 
a specified amount of time per year (‘holding service’), and will actually be charged or discharged during 
a lesser amount of time. Only the actual use has an impact on battery and therefore only this use is 
modelled. EVs are assumed to constantly charge/discharge within the specified DOD during the time 
that they are providing the V2G service in the model. Although, in reality the charging/discharging may 
be distributed across the service holding time with periods of no activity in-between, this distribution 
does not affect degradation provided that the throughput is the same. 

Two types of ancillary grid services are considered in the model – a) firm frequency response and b) 
balancing services. Firm frequency response is an automatic change in active power output or demand 
in response to a frequency change. Services are procured through a competitive tender process, where 
tenders can be for low frequency events, high frequency events, or both [42]. The balancing mechanism 
type service in the UK is STOR (Short term operating reserve). This service requires the provision of 
extra power through standby generation, and/or demand reduction, in order to be able to balance 
unforeseen mismatches in supply and demand [42]. 

Holding payments of £11-20/MW/hour are available for dynamic Firm Frequency Response (FFR) 
based on National Grid accepted tender data [43]. Typical FFR utilisation is from 1.4% to 6.9% 
depending on the response characteristics. 6.9% assumes that the battery starts responding at a 
deviation of 0.05 Hz and delivers full response at a deviation of 0.2 Hz. This is based on analysis of 
per-second resolution frequency data provided by National Grid [44]. Availability payments for STOR 
are typically £3/MW/hr and utilisation payments are £100-150/MWh based on the most recent National 
Grid reports [45]. This service is procured for Mon - Fri 07:00 - 13:30, 16:00 - 21:00 and Sat - Sun 10:30 
- 13:30, 16:00 - 20:30 and is typically called on 70 times per year for 2 hours each time (meaning that 
utilisation time is limited to ca. 3% of total holding time). 
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In line with the battery degradation analysis, the following parameters were found to affect battery 
lifetime in the case of V2G service provision: 

a) charge/discharge power (kW) at which the service is provided; 
b) DOD range utilised for the service; 
c) Percentage of holding time that the service is utilised (held at 3% in all cases in Table 5). 

Specific cases that have been analysed to estimate the impact of V2G services are summarised in 
Table 5. The DOD window was limited to 5% in Cases 1 and 3 to represent FRR service which is likely 
to require the battery to charge and discharge within a narrow range. The entire useable capacity of the 
battery (90% DOD) is available for the services in cases 2 and 4 to reflect STOR requirements. In 
scenarios where services were modelled assuming domestic charging capability (cases 1 and 2), the 
impact on battery life was insignificant both when DOD was limited to 5% of the total PHEV battery 
capacity as well as when the entire useable capacity of the battery (90% DOD) was utilised. This is due 
to a very low number of added equivalent full cycles. However, when the services are provided at high 
power (Cases 3 and 4), the number of cycles due to service provision increases significantly and leads 
to much higher degradation. The lifetime decrease is particularly high in Case 4 because of intensive 
cycling at 90% DOD. Note that the battery degradation proceeds at accelerated rate when the DOD is 
higher than at 5% as discussed in Section 2.4.3. In-depth analysis of the likelihood of various strategies 
for the EV integration into the grid is outside of the scope of this Stage 1 report. However, the data 
collected during the CVEI Stage 2 trial will provide the opportunity to inform managed charging and 
V2G scenarios. Based on the observed response to demand management, the SOH model and wider 
analytical framework will be used to determine the impact of demand management on battery life and 
inform strategies to minimise this impact.  

Table 5 Summary of the case studies for providing V2G grid services 

Input parameter Baseline Case 1 Case 2 Case 3 Case 4 
Type of service None FFR STOR FFR STOR 
Power available (kW) - 3 3 50 50 
DOD window for service (% of total 
capacity) None 5 90 5 90 

Holding time (hr/day) None 8 8 8 8 
Utilisation time (hr/day) None 0.2 0.2 0.2 0.2 
Years until SOH reaches 80% (years) 13.0 13.0 12.8 11.2 8.0 
Added equivalent full cycles per year (for 
services) 

N/A 16 19 265 447 

Required annual payment to “break even” 
(£/year) – based on 2015 battery pack cost N/A 0 0 118 462 

Required annual payment to “break even” 
(£/year) – based on 2020 battery pack cost 

N/A 0 0 76 295 

Estimated value of the service provided 
(£/year) 

N/A 96 53 1,488 876 

For the purpose of this preliminary economic assessment the incremental annualised battery 
replacement cost was estimated for the cases presented in Table 5 using battery pack costs for 2015 
and 2020 base years developed by Element Energy under D3.1 [41]. The results show that services 
provided at high power (50 kW) lead to substantial decrease in battery lifetime and would require a 
compensation of £462/year (based on 2015 battery pack cost) assuming Case 4 from Table 5. For 
reference, analysis of current grid service revenues shows almost twice higher value, assuming the 
holding and utilisation assumptions used in Case 4 [43]–[45]. The case of providing Firm Frequency 
response at high power (Case 3) results in even higher revenues because the service holding value is 
higher. This suggests that the revenues received for providing grid services would be sufficient to 
compensate EV owners for the costs of providing V2G services at high power. Although conclusions 
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on the feasibility of grid services cannot be made based on the limited number of analysed cases 
presented here, the SOH tool can be used for more in-depth analysis.   

V2G services in Cases 1 and 2 cause relatively small degradation (or even no additional degradation 
in Case 1) because only a small number of equivalent full cycles is added due to service provision. 

In conclusion, the following should be considered in order to lessen the economic impact of V2G 
services: 

• Power limitation to ensure that the battery is not extensively cycled during provision of grid 
services; 

• DOD limitation to ensure that the battery degradation proceeds at a lower rate – note that the 
model includes three DOD windows and the rate of degradation is different in each band; 

• The choice of positive electrode chemistry and ensuring that the pack is not overheating as 
high temperatures were found to accelerate degradation 

2.7 Summary of the modelling approach 
The inputs of the battery SOH model can be categorised into (a) battery properties, (b) travel data, (c) 
charging data and (d) price forecasts. Battery properties determine the coefficients and scaling factors 
that the model uses. Travel data is a proxy for vehicle usage profiles. The average values are defined 
for some of the parameters affecting battery lifetime to reproduce different degradation pathways. The 
charging data is combined with the travel data to account for the effect of high charging rates, additional 
cycles due to V2G services, etc. Price forecasts for grid services and battery replacement are used to 
calculate the revenue generated from providing grid services. This is shown schematically in Figure 8. 

Battery	properties:
Battery	chemistry,	pack	
capacity,	pack	voltage,
available	DOD	range

Travel	and	geography	data:
Temperature	profile,	average	C-rate	during	
driving,		travel	profile,	kWh/km,	DOD	in	

charge	sustain	mode

Ah	spend	in	charge-
depleting,	sustain	and	
blended	modes,	as	
well	as	charging

Charging	data:
Charging	profile,	target	SOC,	power	and	%	of	DoD	

range	available	for	V2G,	type	of	grid	service	
provided,	level	of	V2G	service	utilisation

Cycling	damage	as	a	function	
of	DOD,	C-rate,	temperature,	
chemistry	and	current	(Ah)

Ah	used	for	V2G,	based	on	the	%	of	
time	the	service	is	provided	and	the	

time	required	for	charging

Input OutputCalculation Database

Calendar	damage	as	a	
function	of	SOC,	

temperature	and	time

Revenue	generated	per	
year	from	providing	grid	

services

• Battery	lifetime	in	years,	the	total	number	of	full	equivalent	cycles,	
distance	travelled	and	the	contribution	of	calendar	and	cycling	
degradation	to	ageing	before	80%	SOH	is	reached

• Battery	life	decrease	due	to	managed	charging	or/and	V2G	services
• Comparison	of	revenue	and	battery	replacement	cost

• Battery	lifetime	in	years,	the	total	number	of	full	equivalent	cycles,	
distance	travelled	and	the	contribution	of	calendar	and	cycling	
degradation	to	ageing	before	80%	SOH	is	reached

• Battery	life	decrease	due	to	managed	charging	or/and	V2G	services
• Comparison	of	revenue	and	battery	replacement	costCalendar	life	factors Chemistry-specific	

cycling	equation	
coefficients

Price	forecasts:
Grid	service	value;

Battery	cost

Inputs	tab Degradation	tabIn	the	model: Coefficients	tab
Costs	tab

Outputs	tab
Temperature	profiles	tab
Charging	and	travel	profiles	tab

 

Figure 8 Schematic of the SOH model showing input categories, data flow, and outputs 
The useable battery pack capacity is used in the model to calculate the number of full equivalent cycles 
based on the total current throughput. The available DOD window in EVs is limited by manufacturers to 
reduce safety risks and maximise the battery life. This is schematically represented in Figure 9. 
Although the DOD window varies with the battery chemistry and level of thermal management in place, 
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a typical allowed DOD window is 85% for BEV packs and 70% for PHEV packs. Note that in the model 
the DOD window is limited from the top only for simplicity (i.e. the maximum SOC is 85%). 

The model calculates cycling ageing by combining total current throughput (Ah) in (a) charge depleting7, 
(b) charge sustaining8, (c) blended9, (d) slow charging (3.3 or 7 kW), (e) rapid charging (22, 43, 50 or 
150 kW) and (f) V2G service modes. It is important to account for the throughput in each of these modes 
separately as DOD and C-Rate can be different, e.g. shallow cycling (0-5% DOD) is likely to be used 
during the charge sustain mode and deep cycling may be relevant for the charge depleting mode in 
PHEVs. Calendar and cycling ageing is assumed to be the same for all standard chemistries (LFP, 
NMC, and NCA). Cycling damage is combined with calendar damage to calculate battery lifetime in 
years and the number of full equivalent cycles before the end-of-life (80% SOH) is reached. All of the 
parameters that the model is not parametrised for (e.g. electrolyte) are assumed to have the same 
effect on degradation in all cases.  

 

Figure 9 Useable versus nominal battery capacity illustration, adapted from [46] 

An example of the key model outputs is shown in Figure 10; capacity fade due to calendar ageing and 
cycling ageing are distinguished. The model also estimates the contribution of V2G service provision to 
the decrease in battery lifetime. V2G services have the potential to decrease the lifetime of battery 
mainly through additional battery cycles. However, if a high C-Rate and/or a deep DOD are used for 
providing V2G services, this may further decrease the lifetime by affecting the average C-rate and DOD 
values.  

Additionally, managed charging may have an effect on C-Rate if the charging rate is slowed down or 
made higher, e.g. to provide frequency regulation. The potential contribution of this is relatively small, 
but it is nevertheless considered in the model. The contribution would be small because the C-rate 
cannot be much higher than the starting C-rate, if at all (limited by the charging point and vehicle on-
board charger). For example, when charging at home at 3 or 7 kW, the charging point will not cope/allow 
a higher rate. Furthermore, it is unlikely distribution network operators would encourage higher power 
rates. Therefore, if charging is managed through a change of C-rate, it is more likely to be through lower 
charging rates. 

Note that the potentially more frequent battery on/off switching for V2G services is not expected to affect 
the lifetime. Frequency of battery cycling is not linked to any of the key ageing parameters detailed 

                                                        
7 PHEV mode in which power is provided exclusively from the battery. BEVs always operate in this mode. 
8 PHEV mode in which the battery is used to optimise the engine performance by discharging during power peaks 
at high RPMs and charging from the engine during low RPMs. HEVs always operate in this mode. 
9 PHEV mode in which power is provided both by the engine and the battery. The battery is partly recharged by 
the engine or regenerative braking during driving. 

Battery state of charge (SOC) 
/Depth of Discharge (DOD): 

0% SOC 
100% DOD 

100% SOC 
0% DOD 

0% SOC 
100% DOD 

100% SOC 
0% DOD 

Usable 
DOD/SOC window 

Total battery 
energy 29kWh 

Usable battery 
energy 23kWh 

Low discharge power, 
overcharge risk, affects life 

State of charge (SOC) seen 
by the driver: 

Low discharge 
power, affects life 
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before (temperature, DOD, C-rate, SOC). In summary, the model developed under WP3 outputs the 
following key parameters: 

• Battery lifetime (year when 80% SOH of total capacity is reached) 
• Total number of full equivalent cycles 
• Number of full equivalent cycles annually 
• Annual revenue assuming the selected grid service value 
• Annual revenue required to "break even" 
• Distance travelled in charge-depleting mode 
• Distance travelled in charge-sustaining mode 
• Total distance travelled 

 

Figure 10 Example of the model output demonstrating accumulated calendar and cycling 
damage 

The developed model is intended to provide a sufficiently accurate battery lifetime prediction in order to 
estimate the feasibility of managed charging and Vehicle to Grid services. On the other hand, the model 
cannot be used to develop new battery chemistries and is not intended to provide sufficient accuracy 
to be applied to real-time SOH calculations on-board a vehicle. 

Battery degradation is a complex combination of multiple processes and the battery research 
community did not yet succeed to explain all the processes involved. Thus, algorithms that model 
battery degradation need to have some embedded assumptions. Table 6 summarises the assumptions 
used for the SOH model developed as a part of this project. Assumptions represent the current 
prevalent view in the scientific community (e.g. calendar ageing is caused by the loss of Li inventory) 
and reflect the sometimes limited availability of data.  
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Table 6 The summary of assumptions used for the model development 

Assumption Comment  

Calendar degradation occurs due to Li 
corrosion at the SEI layer causing the loss of Li 
inventory. 

Clear consensus in the scientific community. 
However, this is an approximation and other 
mechanisms may be contributing to calendar 
ageing. Data on other parameters and their 
impact is not available.   

Calendar ageing is governed by the processes 
on the interface between the electrolyte and 
the negative electrode. 

Clear consensus in the scientific community. The 
choice of positive electrode may also have a 
minor effect on calendar ageing, which is not 
captured. 

The degradation rate depends on the absolute 
DOD window for the cycle, but not on the 
central SOC for this cycle. 

Any potential interdependencies between the 
SOC and DOD are not captured. The reviewed 
literature does not investigate these potential 
interdependencies and all the publications 
reviewed used the same average SOC.   

The same degradation mechanisms are valid 
for the entire modelled range of all parameters 
e.g. same equations applied to low and high 
temperatures. 

Some degradation modes may not be captured. 
Data is not available for the full range of the 
possible parameters, e.g. no published research 
shows systematic degradation test results for very 
low temperatures.   

The results of static experiments can be used 
to model dynamic profiles maintaining the 
accuracy sufficient for the purpose of this work. 

A loss in modelling accuracy is to be expected for 
highly dynamic usage profiles.  
No data available to investigate the potential 
variation in degradation rates when varying 
several parameters; in published research, 
typically a single parameter is varied.  

The data from cell manufacturer datasheets (at 
standard conditions: room temperature, 100% 
DOD) can be used to derive the coefficient that 
models the effect of the positive electrode 
chemistry on degradation (used in the cycling 
ageing equation).  
The same degradation equation applies across 
positive electrode chemistries (only one 
coefficient varies).  

The derived coefficients might have been different 
if calibrated outside of standard conditions. This 
means the modelled variation across positive 
electrode chemistries is not validated by data for 
cases where the temperature and DOD are not 
standard, nor is the equation used. 
No comparable data across a set of conditions is 
available for different chemistries. Although the 
methodology observed across publications varies, 
there is evidence that the same form of equation 
is applied to various Li-ion chemistries. 

The effect of parameters for which the model 
could not be parametrised, such as cell size, 
format, electrolyte type, electrode thickness, 
specific electrode blends and temperature 
gradients in the battery pack can be ignored 
for the purpose of this work. 

The result of the model provides only an estimate 
of the degradation. The same assumptions are 
made in academic publications using semi-
empirical equations for modelling battery 
degradation. The SOH model uses the same 
parameters (temperature, SOC, DOD window, 
time, C-rate) than in the literature. 
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3  Statistical analysis of EV battery degradation and model result 
validation with EV real world data 

3.1 Surveys of EV drivers 
New BEVs and PHEVs are sold with a warranty covering the battery pack from the manufacturer. This 
gives a broad indication on how long the battery manufacturer expects the battery to last in real-life 
conditions. At the same time, until recently most manufacturers did not offer any capacity warranty for 
their battery packs. Notably, Nissan has recently amended their battery warranty to cover capacity – it 
states that all Leafs will maintain a charge of at least 70% of original capacity for the first 5 years/60,000 
miles (ca. 100 000 km) [47], [48]. Capacity retention is of particular importance for BEV buyers, as this 
is directly linked to the driving range. However, even the leading EV models have been on the market 
for less than 10 years. Therefore, only limited actual data on battery pack degradation in real-life 
conditions is available. In the absence of robust systematic testing data, statistics gathered from EV 
owners may be used as a guide for estimating battery capacity fade. The requirement for higher 
measurement precision in smaller PHEV battery packs make it more difficult to extract valuable data 
from these user surveys and hence this section focuses on BEVs. 

LFP batteries are widely used in automotive applications by Chinese manufacturers. Automobile 
manufacturer BYD based in Shenzhen, China, launched its first all-electric e6 sedan in 2010. In 2013, 
the company announced that 30 EV taxis operating in Shenzhen travelled 400 000 km on average and 
have a capacity fade of less than 9% [49]. The claimed e6 range of 300 km implies approximately 1 
300 battery cycles after 400 000 km. The degradation calibrated with BYD data for individual LFP cells 
in Figure 6 is indeed just below 9% after 1 300 cycles. However, direct comparisons should be made 
with caution since 1 300 full cycles take less than 4 months in the laboratory environment. BYD’s 
announcement suggests that single-cell degradation in steady-state laboratory conditions can be 
extended to real-life operation under dynamic load conditions in a battery pack without any 
modifications. This information should be treated as indicative only, as neither provided details on how 
the capacity loss was estimated, nor were the results assessed by an independent party. 

A survey of 240 owners of Nissan Leafs fitted with a 24 kWh (21.3 kWh usable) battery pack with  
LMO\NCA cathode suggested less than 15% capacity loss after ca. 20 000 km driven [50]. The 
drawback of this survey is that owners of the EVs were asked to report how many capacity bars are 
displayed on the EV control panel at full charge. The absence of one or more bars would indicate a 
capacity loss. Over 90% of the drivers reported that their cars are still showing all capacity bars at the 
time of the survey, suggesting that the capacity loss is anywhere between 0% and 15% (refer to Section 
3.2 for more results on the Nissan Leaf). More interestingly, the survey results indicated that most of 
the drivers who did report capacity loss after ca. 20 000 km were using cars in a hot climate. The Nissan 
Leaf has a passive thermal management system, so climatic conditions may affect the battery operating 
temperature both during driving and when parked outside. This reiterates the importance of including 
temperature into the ageing equations. 

A similar study by “Plug In America” surveyed 234 Tesla Roadsters by contacting owners through Tesla 
Motors Club and collecting data through Open Vehicle Motoring System [47]. The results suggested 
0.15% capacity loss per 1 000 miles, which translates into ca. 3.8% capacity loss after 40 000 km, the 
average distance travelled by the EVs surveyed. Using these results to forecast further degradation 
would assume that the rate of degradation is constant throughout battery lifetime. However, this is not 
likely to be the case as was demonstrated by another Tesla Model S survey. As shown in Figure 11, 
degradation of the 85 kWh battery pack with an NCA cathode levels off after ca. 50 000 km at 5%. This 
behaviour is in line with square root dependency on time for calendar ageing and almost square root 
dependency on current throughput for cycling ageing. On the other hand, surveys of Tesla EVs did not 
reveal any discernible patterns for degradation dependency on climate. Active liquid cooling installed 
on Tesla battery packs goes some way towards explaining this.   
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Figure 11 Capacity loss estimation for 85 kWh battery pack with NCA cathode in 80 Tesla 
Model S vehicles obtained through European Tesla Motors Club and showing slowdown in 
degradation after ca. 50 000 km travelled [51] 

In conclusion, the results of surveys have a large statistical spread and should be used for sense 
checking, rather than for validation. These surveys are not directly comparable, but suggest some 
common trends: 

• Degradation reported in surveys is moderate (less than 10%) even after substantial travelled 
distances (>100 000 km). 

• Degradation rate is not constant and is likely to decrease with time. 
• Battery pack design has an effect on degradation, e.g. through the choice of cooling system. 

3.2 Battery testing results for on-road BEVs and PHEVs 
Systematic EV battery testing in laboratory conditions is necessary to provide insights into battery 
degradation needed for reliable model validation. Idaho National Laboratory (INL) conducts battery 
testing for on-road EVs on a regular basis. These experiments are conducted based on a testing 
procedure developed by the United States Advanced Battery Consortium and the results are publically 
accessible on INL’s website [52]. INL publishes on-road usage and a performance summary along with 
the battery degradation for each vehicle. This information has been used to validate the results of the 
model. 

3.2.1 BEV testing 
Idaho National Laboratory has published laboratory battery testing results for several Nissan Leaf S 
cars (2013) operated over a fixed on-road duty cycle [52]. All of the vehicles were exposed to similar 
conditions, summarised in Table 7. The variations in each value between the vehicles is also shown in 
Table 7. Battery capacity loss was analysed at INL by performing Static Capacity Tests and the Electric 
Vehicle Pulse Power Characterization Tests. 

Results for 3 Nissan Leafs (2013) are shown along with the modelled degradation in Figure 12. Although 
the travelled distance is similar for all vehicles, two of the vehicles have been driven for 450 days, while 
VIN 0646 has been driven for 618 days. The testing of all three vehicles started around the end of 
January 2014. Although the average SOC is not reported for the vehicles the on-road usage statistics 
published by INL show a statistical distribution of SOC before and after charging events. The SOC was 
reported to be above 50% more than 70% of the time when the vehicles were plugged in. Also, the 
vehicles were charged to above 90% SOC around 90% of the time according to the statistics provided.  
The SOC is treated as an uncertainty for modelling, but it is expected that models assuming a high SOC 
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(>50%) should yield better correlation with the observed degradation. The modelled results are shown 
for two different cases – SOC = 80% and SOC = 20% in Figure 12. 

Table 7 Extract of key on-road usage, performance and battery pack degradation data for 
Nissan Leaf S (2013) available on the INL website [52] 

Parameter Value Variation (+/-) 
Overall electrical energy consumption (kWh/km) 0.18 0.02 
Percent of city travel 90% 8% 
Charging power (kW) 7 1 
Average ambient temperature (°C) 3210 1 

 

For the purpose of modelling calendar degradation, it was assumed that BEVs were driving 20 000 km 
in a year. Calendar and cycling ageing were combined in the model and a custom chemistry coefficient 
(0.195)11 was used. The modelling results for SOC = 80% agree better with the final observed 
degradation. Degradation rate decreases around 15 000 km due to colder ambient temperature, as this 
corresponds to late autumn and winter. The degradation rate picks up again around 25 000 km as the 
temperature rises in April. 

 

Figure 12 Battery degradation for 3 different on-road Nissan Leaf S (2013) reported by Idaho 
National laboratory and the model results for the same conditions 
Whilst the modelled results show deviation from the actual degradation, it is important to note that the 
observed degradation for different vehicles also shows a degree of spread in values. VIN 7885 has 
degraded by 14.2% and VIN 9270 by 16.3% within the same timeframe, despite being exposed to 
identical conditions. This emphasises the fact that even the batteries from the same manufacturer 

                                                        
10 INL collected the CAN signal for ambient temperature only then the vehicle was operation (i.e. during driving). 
As this ignores the times of the day when the vehicle is parked, notably the nigh-time temperatures, the average 
Phoenix, Arizona, USA temperature profile has been used for modelling instead [55].  
11 Nissan Leaf uses LMO-NCA cathodes in its batteries. Direct calibration of the model for this type of cathode is 
not possible as Nissan does not provide any experimental degradation curves for its batteries. Therefore, the 
customs coefficient has been adjusted so that the resulting degradation matches the actual data as closely as 
possible whilst also keeping all other testing parameters in line with the data on testing conditions (e.g. temperature, 
kWh/km). 
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exposed to identical conditions may degrade differently (likely as a result of minor differences in 
manufacturing and operating conditions). 

The effect of rapid charging on battery degradation was reported by the INL for the Nissan Leaf (2012) 
[53]. Two vehicles were charged exclusively at 3.3 kW, while the other two vehicles were fast charged 
at 50 kW. All vehicles were operated over a fixed on-road duty cycle and were charged twice a day for 
1.5 years. Average driving energy consumption over the duration of the project was ca 0.14 kWh/km 
for all vehicles. The battery pack temperature that was taken at the beginning of each charge and at 
the beginning of duty cycle was between 15 °C and 40 °C, with the median value of 32 °C. It was 
concluded that residual heat from rapid charging elevates the pack temperature slightly for the next 
drive, but the change is relatively minor (ca. 1.5-2 °C). 

 

Figure 13 Comparison of the modelled and INL data [53] for battery capacity loss for vehicles 
using slow and rapid charging 

The testing started in November 2014 and continued for 15 months. The traction battery packs were 
removed and tested when the vehicles were new, and at 16 100 km (10,000 miles) intervals. The battery 
tests showed that while the fast charged vehicles did lose more capacity than the control vehicles, the 
difference was small relative to the total capacity loss, as shown in Figure 13. The overall capacity loss 
at the end of the experiment was ca. 25%, with less than 3% points attributable to the effect of rapid 
charging. It should be noted that this could have been indirectly caused by rapid charging through the 
increase in battery pack temperature during charging, in addition to the direct effect of the higher C-
rate. 

The modelling results shown in Figure 13 assume a SOC = 80% and demonstrate a relatively good 
agreement with the actual data. The decrease in the degradation rate between 40 000 km and 80 000 
km is due to lower ambient temperatures during the winter period (November to March). Note that the 
observed degradation after the first 25 000 km in Figure 12 is ca. 15%, whilst the degradation in Figure 
13 is under 10%. In both cases the vehicles were driven in the same climate, were exposed to similar 
duty cycles and charging routines. Partly the difference is explained by the fact that the results in Figure 
12 are shown for the vehicles that travelled 25 000 km in approximately a year, whilst the results in 
Figure 13 are for vehicles that travelled the same distance in less than 5 months. Therefore, the 
calendar damage in Figure 13 is somewhat lower than in Figure 12 for the same travelled distance. 
However, modelling results suggest that the effect cannot be fully explained by the difference in 
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calendar ageing. As previously noted, this underlines the complex nature of battery ageing and the 
challenge of model parameterisation. 

3.2.2 PHEV testing 
Battery packs in PHEVs are smaller compared to BEV packs in terms of capacity and are on average 
exposed to milder (low DOD) cycling conditions. The INL published results on battery capacity tests for 
several PHEV models on their website [52]. Figure 14 compares the modelled results with the actual 
data for the plug-in Toyota Prius (2013). This PHEV model has a 4.4 kWh battery pack with an NCA 
cathode and  air cooling [54]. For modelling purposes, the temperature profile for Phoenix, Arizona, 
USA was assumed [55]. Three Toyota Priuses (2013) were driven ca. 50% of the total travelled distance 
in urban environments and 50% on the highway and charged at 7 kW. The tests started in July 2013 
and lasted two and a half years until the end of 2015. The test vehicles were travelling ca. 90 000 km 
per year.  

The INL data does not provide information on the SOC for PHEVs. The INL on-road usage statistics for 
Toyota Prius (2013) suggests that around 70% of all trips were in charge sustain mode, with the rest 
being in a blended mode (trips where fuel was consumed by the engine, and net electrical energy was 
consumed from the battery to propel the vehicle). Typically, the EV would switch to charge-sustain 
mode when the SOC is relatively low. With the majority of trips in charge sustain mode, it is reasonable 
to assume low SOC on average for the purpose of modelling. The SOC has been varied in the model 
to get the best correlation with the actual data. The modelling results at 15% SOC show a good match 
with the actual data (Figure 14). No trips in full electric mode are assumed in this case, in line with INL 
data. 

An EV in charge sustain mode uses only a small DOD window (5% has been assumed in the model), 
which puts cycling ageing into the bin with the lower degradation rate (0-5%). Energy flow during the 
charge-sustain mode is not normally measured and reported, therefore an estimate of 0.005 kWh/km 
has been assumed12. It should be noted that this captures both the discharge and charge during driving, 
as the battery is never depleted. 

Similar analysis has been conducted on several Chevrolet Volt (2013) with a 16.5 kWh LMO\NMC 
battery that was tested for 3 years starting in January 2013 in similar conditions (Phoenix, Arizona in 
the United States) temperature profile; 90 000 km/year; 7 kW charging). The main difference with the 
Toyota Prius testing was that the Chevrolet Volt drove 13% of the total distance in full electric mode, 
according to INL data. The results are shown in Figure 15. Degradation that is modelled assuming the 
average SOC = 15% is in a good agreement with the measured capacity loss. The variations in 
degradation rate in Figure 14 and Figure 15 (manifesting itself as changes in curvature) are due to 
variations in temperatures throughout the year in both experiments (the vehicles were tested during a 
3-year period in both cases). 

Although the degradation observed for the Toyota Prius (Figure 14) and the Chevrolet Volt (Figure 15) 
are similar (reaching ca. 10% after 200 000 km in both cases), the reasons for degradation are slightly 
different. In the case of the Toyota Prius, the cycling damage is relatively low because of operation 
exclusively in charge-sustain mode and calendar ageing dominates the degradation.13 The Chevrolet 
Volt has a larger battery and 13% of the total travelled distance is driven in full EV mode, which results 
                                                        
12 There are no directly useable data on this in the literature. INL reports 0.02 kWh/km for Prius in a blended-mode 
(Trips where gasoline was consumed by the engine, and net electrical energy was consumed from the battery to 
propel the vehicle). However, in a charge-sustaining mode, the net energy consumption is -0.003 kWh/km. This 
number does not indicate what the throughput is (which is what is needed here), because the battery could have 
been cycled a lot in charge-sustain mode without taking any net energy from it. Trial data will provide (confirmation 
from TRL is pending – actual as of 31/01/2017) the information on which mode of operation was used in conjunction 
with high-resolution SOC in-use data, which can then be used to derive energy throughput, see the Annex for more 
information on how the Phase 2 managed charging trial data will be used. 
13 Note that separation into calendar and cycling ageing is available in the model but not shown in Figure 14 and 
Figure 15 for clarity. 
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in the increased rate of cycling degradation. On the other hand, the trial of the Chevrolet Volt started in 
winter and the temperature in the first few months of operation was relatively low leading to a lower 
initial rate of calendar degradation, which has offset a higher cycling degradation. The dashed line in 
Figure 15 shows the modelled degradation that would have occurred if the trial had started in July (same 
as the trial for Toyota Prius). 

 

Figure 14 Battery degradation for 3 different on-road Toyota Prius (2013) reported by Idaho 
National laboratory and the model results for the same conditions for SOC = 15% 
 

 

Figure 15 Battery degradation for 3 different on-road Chevrolet Volt (2013) reported by Idaho 
National laboratory and the model results for the same conditions for SOC = 15% 
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4  Summary and conclusions 

4.1 State of health modelling 
The model has been developed and calibrated using the latest available data from the following 
sources: (a) academic publications; (b) OEM data sheets; (c) EV testing report and (d) EV owner 
surveys. The primary ageing mechanisms and the sensitivity to certain parameters, e.g. DOD or C-rate, 
was found to vary between the sources. This is due to the complexity of the underlying battery ageing 
mechanisms, which are still not fully understood. Analysis of the academic literature has been 
conducted in parallel with consultations with automotive battery industry experts in order to develop the 
model algorithm that reflects battery ageing trends. To satisfy the requirement for the model to use 
simple inputs (i.e. measurable on-board a vehicle), a semi-empirical modelling approach has been 
chosen. The model inputs were disaggregated into the following categories: (a) battery properties, e.g. 
capacity; (b) travel and geography data, e.g. temperature and (c) charging data, e.g. charging power. 
The battery degradation was separated into the calendar ageing and cycling ageing components. While 
the former increases with time, the latter increases with the current throughput (Ah). The following 
general relationship has been developed and parameterised to account for the total capacity loss: 

𝑄;>?? = 𝑓(𝑇, 𝐶ℎ𝑒𝑚𝑖𝑠𝑡𝑟𝑦, 𝐷𝑂𝐷, 𝑆𝑂𝐶, 𝐶PCQ<, 𝐴ℎ, 𝑡) 

The majority of the reviewed sources were found to agree on the effect of temperature, SOC, current 
throughput and time, on battery degradation. The effect of DOD and C-rate is less studied in literature 
but generally, batteries are reported to degrade faster when cycled at high DOD and high C-rate. These 
findings are reflected in the model. 

The review has covered all of the lithium-ion chemistries currently used in EVs14. The degradation of 
LFP batteries was found to be well documented, while an increasing number of recent publications was 
found to cover NMC and LMO batteries (refer to Table 1). At the same time, the data for NCA batteries 
(used by Tesla) remains relatively scarce. The analysis of the underlying degradation mechanisms 
indicated that battery chemistry is likely to have an effect on ageing. Chemistry-specific coefficients 
were calibrated for LFP, NMC and NCA batteries using manufacturers’ technical spreadsheets. It should 
be noted that degradation rates were found to vary even between batteries with same chemistries and 
therefore the model additionally allows the user to specify a custom chemistry-specific factor.  

The battery degradation rate was found to follow broadly a square root relationship with time and current 
throughput (Ah). Elevated temperatures were found to be a major contributor to both calendar and 
cycling ageing. High SOC was found to increase calendar ageing, while a high C-rate was found to 
accelerate cycling ageing. However, the effect of C-rate during rapid charging (50 kW) was found to be 
relatively minor (refer to Figure 13). 

The model has been successfully validated against both cell level testing under laboratory conditions 
and pack level testing under on-road conditions. Comparing the modelling results with the measured 
data from various sources showed that a certain variation in battery degradation, which is not captured 
by the model, should be expected. This is due to the complexity of the underlying phenomena that the 
model aims to replicate. However, all of the observed EV battery ageing trends are correctly reflected 
in the model and may be used to estimate battery lifetime in typical operating conditions. 

4.2 Summary of potential economic and technical impact of demand 
management and V2G strategies 

Potential effects of managed charging and ancillary grid services on battery lifetime have been analysed 
in Section 2.6. It was concluded that while potential changes in SOC during managed charging can 

                                                        
14 Note that some EV manufacturers use blended or otherwise modified cathode chemistries, which are typically 
protected by intellectual property rights. These have not been explicitly covered in this report. 
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noticeably impact battery lifetime, charge/discharge power and the DOD window will determine the 
impact of V2G services on battery degradation. Equally, the increase in C-rate both during managed 
charging and V2G services may cause additional cycling damage, although this was shown not to be 
significant. A function to quantify the decrease in battery lifetime due to ancillary grid services has been 
included in the model. 

EV battery pack costs are used in the model for the economic assessment of managed charging and 
V2G service provision. Managed charging that does not significantly increase the average SOC was 
found to require only minor additional payments to EV owners. If the SOC is decreased by introducing 
managed charging, the EV battery lifetime may even increase, providing an additional incentive for EV 
owners to participate in managed charging.  

Preliminary analysis revealed that V2G services at high power (50 kW) can result in noticeable 
additional degradation, particularly if the DOD window available for the service is not limited. Scenarios 
where V2G services were provided limiting the EV charge/discharge power to 3 kW, causes only a 
minor increase in battery cycling and hence did not lead to a significant decrease in battery lifetime. 
The services provided at low power and low DOD may be a good entry point for a V2G service rollout. 
The developed modelling tool can be used to conduct a comprehensive analysis of various possible 
charging and grid service scenarios by varying relevant inputs.  

4.3 Research and data gaps 
The SOH model was developed for lithium-ion batteries, the technology that currently dominates the 
EV market. The calendar and cycling ageing equations have been calibrated with data for batteries with 
LFP cathodes, as this type of battery is best represented in the academic literature. Batteries with 
blended cathodes (e.g. LMO\NMC) are increasingly used in automotive industry, but there is a lack of 
systematic studies on the degradation of such cells in academic literature. Therefore, the model has 
been calibrated with the experimental data for batteries with NMC and NCA cathodes at standard 
conditions, available from battery manufacturers, and a custom chemistry coefficient was used to 
validate the results for the blended cathode chemistry of the Nissan Leaf (Figure 12 and Figure 13). 
However, it is recognised that batteries with different cathodes may respond slightly differently to 
changes in C-rate and DOD. The review of available literature has also shown that the degradation rate 
may vary by manufacturer even for identical chemistries (detailed in Section 2.4.5). 

In the 2020s or later, new technologies might enter the automotive market, such as lithium metal (e.g. 
lithium sulphur) batteries. The anode in lithium-ion batteries is also expected to transition from graphite 
to a blend of graphite and silicon [41]. In both cases, one impediment to the rollout of these technologies 
is that the cycle life is currently too short for automotive applications. As such, there is not yet systematic 
data on parameters affecting lifetimes of these batteries, as there is for the battery chemistries that have 
been included in this SOH model. It is therefore not possible to comment on the impact of demand 
management or V2G provision on such future batteries. 

The developed model can be used for a first order assessment of the impact of managed charging 
strategies. However, inherent limitations of the semi-empirical approach do not allow the entire range 
of factors that may affect battery lifetime to be captured in this model. Fundamental research of 
degradation mechanisms in Li-ion batteries combined with a systematic experimental analysis of these 
mechanisms is required and will lead to improved accuracy of State of Health models. A lack of 
understanding of the fundamental degradation mechanisms in Li-ion batteries has been emphasised 
by industry experts and further research and testing has been outlined as the key to advance State of 
Health modelling. 
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6  Annex – Use of CVEIP Phase 2 trial data in the State of Health 
Model 

The Phase 2 managed charging trial will generate a dataset that can be used in the Excel State of 
Health (SOH) model to calculate the capacity loss of an EV battery under different driving and charging 
conditions. The processing required in order to use the trial data in the SOH model is described here, 
to demonstrate that the model will be able to make full use of the data following updates in Phase 2. 
The annex covers the following aspects: 

• the trial data resolution; 
• the proposed resolution and ‘dynamism’ in the Phase 2 SOH analysis; 
• the trial outputs required for the SOH model; 
• the trial data processing for the use in the SOH model. 

The trial data resolution and the background for processing 

The dynamic nature of driving means that the time-step required to capture the variation in key trial 
parameters is in the order of seconds. Therefore, the trial will generate a journey dataset with key 
parameters available with 10-second resolution (e.g. SOC during journey) and a charging dataset with 
key parameters (e.g. SOC during charging) available with 5-minute resolution.15 Using higher resolution 
sub-minute data in the SOH model is not beneficial in terms of accuracy for the chosen method of the 
SOH estimation (semi-empirical approach) as discussed below. Equally, handling the data with a sub-
minute resolution is impractical in Excel as the data will exceed the spreadsheet row limit. Given that 
the proposed 5-minute resolution in the SOH model for Phase 2 can be accommodated within the 
current Excel-based model, we do not propose to change the modelling platform for Stage 2. 

The journey data will be converted to a 5-minute resolution in order to combine it with the charging data 
available at this resolution. Equations used in the SOH model have a certain degree of non-linearity, 
which can lead to accuracy loss when input data is averaged. Figure 16 and Figure 17 compare the 
effect of converting data with 10-second resolution to 5-minute and 1-day resolution for a hypothetical 
case. In this example, an EV with a 24 kWh battery pack is assumed to make two journeys every day, 
each journey lasting one hour. The energy throughput during each journey is randomly generated within 
a pre-defined limit of 0.12 kWh/km and 0.25 kWh/km. The EV is then assumed to fully charge at night 
at 7 kW to the target SOC of 80%. The temperature is assumed to be constant at 10°C for this example. 
The purpose of this exercise is to understand whether averaging the inputs for the SOH model has a 
significant impact on accuracy. 

The results shown in Figure 16 suggest that the degradation modelled using 5-minute resolution is 
indistinguishable from the degradation calculated from the original 10-second dataset. As expected, the 
degradation calculated from data averaged over the entire day, e.g. using only a single value for each 
parameter, is linear during the day and does not represent the actual degradation throughout the day 
well. However, the loss in accuracy for the end-of-the-day degradation is relatively small even in that 
case. 

Figure 17 demonstrates that the loss in accuracy is relatively small both in the case of averaging inputs 
to 5-minute and 24-hour intervals when calculated over a period of one month. The loss in accuracy at 
the end of the month is only 0.01 percentage point for 5-minute resolution and 0.03 percentage points 
for 1-day resolution. The reason for this low sensitivity of the results to the resolution of data is that the 
equations have a low level of non-linearity for key inputs. This does not undermine the requirement for 
collecting the journey data at 10-second resolution, as this is a prerequisite for being able to average 
some of the inputs (e.g. C-rate) correctly. 

                                                        
15 As per information shared by TRL. Confirmation on data logging from VW and EVConnect pending (current as 
of 31/01/2017). 
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Figure 16 Comparison of battery degradation calculated over a 24 hour period using a 
hypothetical driving profile 
 

 

Figure 17 Comparison of battery degradation calculated over a period of one month using a 
hypothetical driving profile 
 
Modifications to the SOH model in Phase 2 

The current SOH model will be modified in Phase 2 in order to make it able to accept the 5-minute data 
set out above. The capacity loss calculation will be conducted for each 5-minute interval (instead of 
daily) by changing the resolution of the “Degradation” tab. The underlying equations and coefficients 
will not be affected. The separation of degradation into calendar and cycling, and into further sub-
categories for the case of cycling ageing, will also remain unaffected as the processing of trial data will 
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ensure that degradation is separated into these categories. All the relevant formulas in the model will 
be modified to use the actual data from the trial. The model will use unique values for energy flow, C-
rate and SOC for each 5-minute interval. This will ensure that the model can fully capture the dynamics 
inherent in different journey patterns and charging scenarios.  

Description of the required trial data 

There are numerous parameters that will be recorded during the trial (as of 31/01/2017, confirmation 
from TRL is pending on the exact list) and that will be required for the SOH model. These are 
summarised in Table 8 and the comments on how each of the parameters will be used in the SOH 
model are below. 

• The vehicle, participant, trial and journey identification numbers will be used to reconcile the 
data from different datasets (if necessary) and to create a number of typical travel and charging 
profiles that will capture the travel and charging patterns for all trial participant groups. 

• The odometer reading will be used to plot battery capacity loss versus travel distance. 
• The SOC at ignition on/off and the SOC during journey (with 10-second resolution) is the key 

trial output that will be used in the SOH model. This parameter will be used to calculate the 
throughput and the C-rate (both used in the cycling ageing equation) during each 10-second 
interval. The SOC will also be used directly in the equation for calendar ageing. 

• The average speed, road class and type will be used in case additional analysis of the results 
or the construction of counterfactual hypothetical travel profiles is necessary. It is expected that 
energy consumption will depend on the average speed, road class and type. Therefore, being 
able to link energy consumption to these variables will allow an analysis of hypothetical travel 
profiles if required. 

• The maximum C-rate will be used to cross-check the C-rate calculated from the energy 
consumed during the journey. It is expected that the C-rate averaged over a 10-second interval 
should be a good approximation of the actual C-rate. However, maximum C-rate may need to 
be used if a vehicle spends significant portion of the 10-second period stationary. 

• Time spent stationary will be used to decide on whether to use maximum or average C-rate for 
the period. This will be the key metric for making the choice between the maximum and the 
average C-rate. If the stationary time for the period is relatively large, the average C-rate is not 
a good approximation, so the maximum C-rate will be used. On the other hand, if the stationary 
time for the period is small, even if there are high peaks in C-rate (e.g. due to acceleration), the 
average value is likely to be a better approximation for the purposes of calculating the cycling 
ageing. 

• The driving mode will be used to indicate charge depletion, or blended/charge sustaining driving 
for the case of PHEVs. The actual DOD window used during driving in each of these modes 
will determine which DOD coefficient will be applied for the period.  Since the bands are 
discrete, a weighted average DOD cannot be used and the throughput in each driving mode 
will need to be converted into the equivalent throughput using the coefficient for the relevant 
DOD window. Each DOD window is defined as the difference between the maximum and the 
minimum SOC during an interrupted operation in a given driving mode. Simple rules will be 
developed to determine the start and end of one continuous operating mode. 

• Plug-in and plug-out date and time will be used to determine when the vehicle is available for 
Vehicle to Grid (V2G) services. Since vehicles are assumed to be available for V2G only from 
home, a tag with location (home/away from home) will be derived (by TRL partners) from the 
GPS data and used in conjunction with the plug-in and plug-out date and time. 

• SOC with 5-minute resolution for all charging events will be used to calculate the energy 
throughput during charging. This will also be used to calculate the C-rate and DOD window for 
the period.  
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Table 8 Trial data required for the State of Health modelling15 

Field Description Source 

Vehicle ID Unique reference number for vehicle RAC 

Participant ID Unique reference number for participant TRL/Cenex 

Trial ID Uptake Trial or Charging trial TRL/Cenex 

Experimental group 
Charging group participants belong to (control / User-
managed charging / supplier-managed charging) TRL/Cenex 

Journey ID Unique reference number for each journey TRL/Cenex 

Odometer reading Odometer reading at end of journey (i.e. ignition off) RAC 

Average speed (km/h, or 
mph) Average speed during 10-second period RAC 

Road type (rural or urban) Road type used during 10-second period RAC 

Road class (motorway, A 
road, lower class road) Road class used during 10-second period RAC 

SoC during journey 
(including at ignition on 
and off) 

Battery State of Charge (SoC) during 10-second period RAC 

Maximum C-rate Maximum discharge rate of the battery within 10- 
second period RAC 

Time spent stationary (s) Time spent stationary during 10-second period RAC 

Driving mode (PHEV 
only) 

PHEV driving mode currently active (charge depleting, 
charge sustain or blended) RAC 

Plug in and plug out date 
and time Date and time of plug in and plug out RAC 

Charge point location Home, away from home. RAC 

SOC during charging Battery State of Charge (SoC) during 5-minute period EV Connect 

 
Trial data conversion and use in the model 

The parameters listed in Table 8 may be part of a single dataset or several datasets (e.g. telematics, 
charging, etc.). In the latter case, the relevant identification numbers provided with each dataset will be 
used to aggregate the parameters into a single dataset. A pre-processing routine will derive the 
following parameters with a 5-minute resolution from the trial data: 

• SOC (%) is expected to be available as one of the core trial outputs. It will be used to derive 
the energy throughput and to group it into driving and charging in each available mode (for 
driving: charge depleting or blended mode and charge sustain mode; for charging: home, away 
from home). The grouping into driving modes may be based on the data (listed above) or 
derived bottom up from the SOC profile. For charging, the input data on charge location will be 
used to differentiate between home and work charging. Additionally, the C-rate derived from 
the SOC will be used to identify rapid-charging events. Separate throughput for each mode is 
required in order to assign it to the correct DOD band when calculating the cycling ageing. 
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• C-rate – this will be a single weighted average value for all modes in a given 5-minute period 
(maximum C-rate may be used during journey, based on the time stationary as described 
above). C-rate is part of the cycling ageing equation. 

• DOD will be used to calculate equivalent throughput for each 5-minute period. The equivalent 
throughput needs to be calculated in order to reflect the difference in cycling ageing rate based 
on the DOD window. 

Conversion between the trial data and the SOH model inputs will be carried out either with a MatLab or 
an SQL routine. The converted data will then be directly pasted into the Excel SOH model. The data 
conversion is schematically represented in Figure 18. Note that the full quantity of trial data will be used 
in the model. For example, data from multiple weeks of operation will be run through the SOH algorithm; 
we will not create average profiles before entry into the SOH model, since these risk hiding week to 
week variations. Similarly, data from each individual user will used separately to calculate SOH impacts, 
as there could be significant differences in usage patterns between users (such as regular use of rapid 
charging or not). This approach will maximise the model’s ability to capture differences between users 
and different weeks.  

Journey	dataset:
SOC,	maximum	C-rate,	time	
stationary,	driving	mode10

-s
ec
on

d	
re
so
lu
tio

n

Charging	dataset:
SOC,	plug-in	and	plug-out	time

5-
m
in
ut
e	

re
so
lu
tio

n

Other	Model	inputs:
Battery	chemistry,	pack	capacity,	available	DOD	
window,	pack	voltage,	battery	cost,	V2G	service	

type	and	values,	V2G	service	holding	and	
utilisation	level,	power	and	DOD	limit	for	V2G

Other	Model	inputs:
Battery	chemistry,	pack	capacity,	available	DOD	
window,	pack	voltage,	battery	cost,	V2G	service	

type	and	values,	V2G	service	holding	and	
utilisation	level,	power	and	DOD	limit	for	V2G5-minute	resolution

Travel	and	charging	data:
C-rate,	SOC,	energy	
throughput,	DOD

Travel	and	charging	data:
C-rate,	SOC,	energy	
throughput,	DOD

Model	
calculations

Model	outputs

Trial	
outputs

Model	
inputs

Trial	data	
processing	

(MatLab	or	SQL)

File	with	data	that	
can	be	directly	used	
in	the	SOH	model

Ambient	temperature	
(proxy	for	battery	pack	

temperature)

Ambient	temperature	
(proxy	for	battery	pack	

temperature)

Temperature	
dataset User	input	in	

the	model	GUI

 

Figure 18 Schematics of the trial data conversion for the use in SOH model 

The SOH model aims to forecast battery degradation over the lifetime of an EV and therefore the 
calculations will need to be extended beyond the timeframe of the trial. This will be achieved by 
repeating the usage patterns generated during the trial.  

Since neither the cell nor the battery pack temperature is expected to be recorded during the trial15, 
ambient temperature will be used as a proxy for battery temperature in the SOH model. The dataset of 
temperatures for the appropriate climate station in the UK (e.g. Heathrow station for London) will be 
used in the model. The temperature of battery packs is not expected to rise significantly over ambient 
when vehicles are stationary and not charging. The temperature variations during charging and driving 
will depend on the design of the pack and the type of cooling system and will not be considered in the 
model (see Section 2.4.1 of this report). 


