THE FUTURE OF TRANSPORT

Consumers, Vehicles and Energy Integration (CVEI) project

Dr Stephen Skippon, Chief Technologist

September 2016

elementenergy

THE BEHAVIOURAL INSIGHTS TEAM.

Project aims

- To address the challenges involved in transitioning to a secure and sustainable low carbon vehicle fleet
- To examine how tighter *integration* of vehicles with the energy supply system can benefit:
 - vehicle users
 - vehicle manufacturers
 - organisations throughout the energy supply chain

The outputs will:

- help inform UK and European government policy
- help shape energy and automotive industry products

Stage 1 - detailed design & analysis to characterise:

- market, policy and regulatory frameworks
- business models and customer offerings
- integrated vehicle and infrastructure systems and technologies for electricity and liquid fuel / hydrogen
- consumer and fleet attitudes to adoption and usage behaviours

Stage 2 – test and validate solutions and assess responses:

- Experimental field trials with mainstream consumers
- In-depth case studies with fleets
- Updates to analytical tools

Modelling framework

Narratives (scenarios)

energy

© Copyright 2016 TRL Ltd

Stage 1 initial analysis suggests:

- Overcoming upfront cost of ULEV ownership in the medium term is essential
 - Encouraging faster uptake in short-term costly compared to carbon savings
- Some de-risking and direct support for new infrastructure to encourage investment is important
 - Significantly smaller in comparison to direct subsidies for vehicles. More important in the short-term for chargepoints; rapid charging development is a priority
- Fiscal mechanisms are important
 - ULEV uptake can lead to a sizeable drop in net transport-related Gov. revenues. Maintaining the share of net transport revenues within the wider economy would need tech. neutral mechanisms (e.g. road prices in the order of 1-2p/km)

Stage 1 initial analysis suggests:

- Demand Management for EVs is important for reducing overall system costs, in particular balancing and network reinforcement costs
 - This appears to allow for a viable Aggregator business model
 - But, must be tested in Stage 2; 'modest' customer response to Static ToU tariffs leads to sizeable reduction in system costs; this is even larger for Supplier Managed Charging
- Significant uptake in car-sharing (where individuals no longer own private vehicles but access one when required) can materially reduce costs

Research Aims	 Update understanding of consumer (EV Innovator) attitudes towards ULEV adoption including exploration of barriers Explore consumer attitudes to managed charging scenarios (with consumers who have experience of a BEV or PHEV)
Method	 In-depth qualitative interviews, recorded, transcribed and analysed thematically 4 groups of 15 participants: Consumers who have owned /leased a BEV for 18 mths or longer Consumers who have owned /leased a BEV for 6 months or less Consumers who have owned or leased a PHEV Non-EV owners who have had previous experience of driving and charging an EV, e.g. as a participant in a previous EV trial

Stage 1 research with consumers: Key findings

- Clear 'plain language' explanations of managed charging propositions needed to engage consumers
- Simple user-friendly interface needed to ensure complexity does not adversely affect engagement
- Energy use could be affected by public charging infrastructure and use of solar panels in home
- Managed charging preferences may depend on personality and individual circumstances
- Without direct experience of Managed Charging, users suggested a potential preference for user-managed schemes (e.g. Time of Use tariffs)

Research Aims	 Develop initial understanding of fleet attitudes towards ULEV adoption including exploration of barriers to adoption Explore attitudes of fleets to managed charging propositions
	 In-depth qualitative interviews, recorded, transcribed and analysed thematically Analysis of potential benefits to replacing existing vehicles with EVs - used as a stimulus for discussion
Method	Participants:
	 Fleet managers from 16 fleets diverse (as far as possible) in terms of fleet size, whether public/private, vehicle type, and average daily mileage Most participating fleets already had some EVs

Stage 1 research with fleets: Key findings

Interviews

- 1. EVs adopted in small numbers, mostly as "toe in the water"
- 2. Adopted for a number of reasons: reputation, evaluation, cost, CSR
- 3. Barriers: limited range, planning requires more effort, availability of public charge points and compatibility with duty-cycle
- 4. EVs characteristically chosen as one-to-one replacements; no use of wider across-fleet optimisation
- 5. Electricity supply not normally the remit of Fleet managers; so all relevant parties in the organisation must be considered
- 6. Managed charging must:
 - not impact operational needs
 - offer material financial benefit

Stage 2

Consumer Uptake Trial

Enhance understanding of EV adoption

- 200 Mainstream consumers, given direct experience with BEV & PHEV (plus ICE control)
- Telematics, questionnaires and choice experiment (capitalising on reduction in 'psychological distance')
- Findings to inform analysis on uptake by mainstream consumers under different market and policy frameworks

Consumer Charging Trials

- Assess response to market frameworks and policy incentives for demand management
- 240 Mainstream consumers (half BEV, half PHEV)
- User-Managed & Supplier-Managed Charging (plus control group)
- Telematics and charging data, questionnaires and choice experiment
- Findings to inform analysis of effectiveness of charging solutions and vehicle-energy integration, and of system level impacts

Fleet Study

Assess informed response to modelled fleet-wide roll-out

- Case studies in-depth qualitative engagement with 8 fleets, drawn from categories with high potential impact on energy system (if EVs adopted)
- Wider fleet roll-out modelled and assessed with operators

Update of Results, Reporting and Dissemination➢ Complete analysis and communicate results

- Capture learning, update modelling frameworks, assumptions, uncertainties and analysis
- Derive conclusions regarding uptake and integration of vehicles into system
- Final reporting and dissemination of key outcomes and next steps

Summary

- Substantial challenges associated with widespread roll-out of low carbon vehicles; shift from a "problem for the network" to an "opportunity through integration of vehicles as part of a wider system" can yield benefits for all actors in the system, including:
 - increased uptake of low-emission vehicles, managing charging and refuelling, and optimising the system design
- Analysis and solutions must be holistic (considering all parts of the system together, including users)
- Robust trials in Stage 2 will generate data to test solutions and inform analysis, and will add unique value:
 - Trial with mass-market users (i.e. people from the majority of the vehicle user and fleet operator markets)
 - Addressing widely-applicable plug-in vehicles (BEVs and PHEVs) suitable for wide range of users
 - Holistic system design

TIS

elementenergy

THE BEHAVIOURAL INSIGHTS TEAM.

