Currently applied filters
Environmental, social and economicAuthor(s): Walker, I., Staw, T., Stewart, A. and Tiniou, E.
Published: 2016
Publisher: ETI
Author(s): ETI
Published: 2016
Publisher: ETI
Author(s): Bradshaw, M.
Published: 2018
Publisher: UKERC
This briefing is based on two propositions.
First, that gas security matters, because today in the UKgas plays a dominant role in the provision of energy services, accounting for almost 40% of total inland primary energy consumption in 2017. Thus, a shortrun failure of gas security would undoubtedly have significant political and economic consequences.
Second, that the current measure is far too narrow to offer a comprehensive assessment of UK gas security, particularly in a post-Brexit context. Discussions at the Gas Security Forum suggested that:the measure of gas securityfocuses only on infrastructure capacity and not supply (capacity does not equal flow); it fails to take account of the time-lag for gas delivery; it does not measure diversity or spare capacity; it ignores the impact of multiple asset failures; and, does not consider the costs associated with ensuring greater security.
It is in this context that this paper seeks to address the following questions:
The thinking behind this paper is that a more extensive approach to measuring UK gas security is needed to address the less dramatic challenges that face UK gas security, as well as the chance of managing a Black Swanevent.
Author(s): Frame, D., Bell, K. and McArthur, S.
Published: 2016
Publisher: UKERC
A review funded by HubNet and UKERC, and written by the University of Strathclyde's Damien Frame, Keith Bell and Stephen McArthur, argues that RD&D activity by Britains electricity distribution network operators has significantly revived; this revival is linked to Ofgem's 500m Low Carbon Network Fund investment.
Author(s): Heptonstall, P.
Published: 2007
Publisher: UKERC
The principal aims of this paper are to examine the range of reported unit costs for major generating technologies, show the range of estimates, explain where possible the reasons for the range, and show to what extent there is any clustering around central values. In addition, the paper explains the components of unit cost calculations and discussed what is, and is not, included in these calculations.
Author(s): Colechin, M. and Ragsdell, G.
Published: 2017
Publisher: ETI
Author(s): Lowes, R., Woodman, B. and Clark, M
Published: 2018
Publisher: UKERC
This working paper considers the risks and opportunities posed to UK heat sector businesses by a potential transformation towards a low-carbon heat system in the UK. It is an output from the Heat, Incumbency and Transformations (HIT) project which is part of the UK Energy Research Centre programme.
The HIT project is investigating the idea of incumbency, considering what the term means, how it is present in the UKs heat sector and what the implications of incumbency are for the UKs potential transformation from a high carbon heat system to a low-carbon heat system.
The previous working paper developed a working definition of incumbency (Loweset al., 2017). This working paper forms the second phase of the project, exploring who the incumbents are in the UK heat system and the implications of the potential transformation for incumbents.
An online m
Author(s): Kazaglis, A., Tam, A., Eis, J., Watson, J., Hughes, N., Gross, R. and Hanna, R.
Published: 2019
Publisher: UKERC
This report, commissioned by the Aldersgate Group and co-authored with Vivid Economics, identifies out how the government can achieve a net zero target cost-effectively, in a way that enables the UK to capture competitive advantages.
The unique contribution of this report is to identify the lessons from successful and more rapid historical innovations and apply them to the challenge of meeting net zero emissions in the UK.
Achieving net zero emissions is likely to require accelerated innovation across research, demonstration and early deployment of low carbon technologies. Researchers analysed five international case studies of relatively rapid innovations to draw key lessons for government on the conditions needed to move from a typical multi-decadal cycle, to one that will deliver net zero emissions by mid-Century.
The case studies include:
The report also sets out which low carbon technologies are likely to have wider productivty and growth benefits in other industries for the UK. These include carbon capture, use and storage (CCUS); heating, ventilation and air conditioning (HVAC); wind energy; biofuels and batteries. These areas should be prioritised by the government’s innovation strategy going forwards.
Author(s): Colechin, M., Warwick, K. and Titley, B.
Published: 2015
Publisher: ETI
Author(s): Blondeel, M., Bradshaw, M., Froggatt, A. and Kuzemko, C.
Published: 2022
Publisher: UKERC
Author(s): Keay-Bright, S.
Published: 2007
Publisher: UKERC
This workshop had several aims:
Author(s): ETI
Published: 2017
Publisher: ETI
Author(s): ETI
Published: 2017
Publisher: ETI
Author(s): ETI
Published: 2017
Publisher: ETI
Author(s): Chilvers, J., Pallet, H., Hargreaves, T., Stephanides, P. and Waller, L.
Published: 2022
Publisher: UKERC
Author(s): Lidstone, L.
Published: 2017
Publisher: ETI
Author(s): Gross, R.
Published: 2006
Publisher: UKERC
This note provides an overview and guide to a process of assessment being undertaken by the UK Energy Research Centre Technology and Policy Assessment function (TPA), with support from the Carbon Trust.
The UKERC has consulted widely on the topics that the TPA needs to consider. It has chosen its preliminary topics carefully, in consultation with stakeholders and in accordance with defined criteria. Intermittency – used herein as shorthand for a range of issues that relate to the costs and electricity system impacts of the intermittent electrical output from wind, solar and some other forms of grid connected renewable generation – has emerged as one of two initial TPA assessment topics.
The TPA will undertake meta-analysis of existing work in order to seek gaps in knowledge, examine different modelling assumptions, and consider how well different pieces of work fit together. The assessment will seek to make clear where and why differences arise in terms of models, assumptions, scenarios and interpretation of findings. It will identify research gaps and provide a clear statement of the nature of the questions that remain.
A key goal is to achieve high standards of rigour and transparency. We have therefore set up a process that is inspired by the evidence based approach to policy assessment undertaken in healthcare, education and social policy, but that is not bound to any narrowly defined method or techniques. The approach entails tight specification of the means by which we will consult stakeholders and solicit expert input, highly specified searching of the relevant literature, and clear and transparent criteria against which relevant findings will be assessed. It is described in the Review Protocol, below.
An introduction to the subject matter and description of assessment activities are provided in this scoping note and protocol.
Author(s): Gross, R.
Published: 2005
Publisher: UKERC
The note is aimed at informed commentators and therefore takes some knowledge for granted – for example of terminology, recent literature and the principal concepts. Its focus is on why and where opinions differ, and the objective is to highlight questions and disagreements, but not answer or resolve either. A more general introduction to the subject is provided in the project scoping note and protocol.
Feedback and comment is invited on all of what follows, and in particular on the set of summary questions at the end of this note.
The remainder of this note covers the following topics:
Author(s): Prpich, G., Darabkhani, H.G., Oakey, J. and Pollard, S.
Published: 2014
Publisher: UKERC
The energy system is highly complex and its future is uncertain due to unexpected changes and contrasting values. The complexity of the system may be defined by, for example, changing politics, technologies, finance and demographics. Under these conditions, decision-makers may struggle to confidently assess their future needs. However, decisions must be made so that organisational objectives are achieved, energy supply is secure and directives are met. For high-level decisions (e.g. strategic decisions reaching far into the future) it is unlikely that more time and better data will reduce uncertainty, and as a result, decisions must be made with existing information. Techniques like scenario analysis are useful for gathering this type of disparate information.
Deliberative techniques (e.g. scenario analysis) are used under conditions of high decision complexity and uncertainty. These techniques may interrogate multiple decision options under various future conditions, thus providing a first-step in understanding inherent risks and uncertainties. In this report we used scenario analysis to assess a set of risks under two plausible future energy scenarios. The studied scenarios included an energy system on a trajectory of development that did not deviate from its current projection (status quo) and a low carbon scenario whereby energy generation was largely provided by non-carbon (e.g. renewable) sources. Energy system experts were used to qualify the different risks and provide industrial insight.
The study analysed a suite of nineteen unique risks. These included political (international agreement, geopolitical issues, UK political issues), economic (project capital costs, investor trust in government, commodity pricing, electricity pricing), social (behavioural change, public perception, democratization of process), technical (rate of innovation vs implementation, energy supply chain, project risks, transport infrastructure), legal (end of life and stranded assets, pre/post operational governance, UK planning and licensing), and environmental (cumulative environmental factors, accidents and climactic events) issues.
The results of this study suggest that political and economic drivers pose the greatest risk, or barrier, to future energy system development. Though these two themes were perceived as being most risky, the character of the risks varied for each scenario. For example, political drivers (i.e. geopolitical) and the impact they may have on hydrocarbon prices posed the greatest risk to an energy system reliant on fossil fuels (i.e. status quo). This was in contrast toa low carbon scenario where the character of political risk (i.e. UK politics) focussed around long-term national policy-making, which in turn highlighted issues about investor confidence. Regardless the differences in character, experts perceived political consistency as being vital for improving confidence in their decision-making. Overall, experts consistently rated risks associated with a low carbon scenario higher than those for the status quo.
Our report provides a snapshot of current industrial thinking about the risks associated with different future pathways that the UK energy system may follow. In addition to identifying perceived risk priorities, this analysis also provides an indication of where gaps in knowledge and understanding about risk may exist. Strategies for addressing these gaps may include improved communication (e.g. between industry, government and academia) or targeted research. In either instance, the ultimate aim is to reduce uncertainty and improve conditions for long-term decision-making in the UK energy system.
Author(s): Beaumont, N., Gross, R., Hanna, R., Taylor, P., Wade, F. and Webb, J.
Published: 2020
Publisher: UKERC
Author(s): Blyth, W., Gross, R., Bell, K., MacIver, C. and Nash, S.
Published: 2021
Publisher: UKERC
Author(s): McLachlan, C., Braunholtz-Speight, T., Hawker, G. and Watson, J.
Published: 2018
Publisher: UKERC
UKERC have submitted a reponse to the BEIS call for evidence on the future for small-scale low-carbon generation. This consultation sought to identify the role that small-scale low-carbon generation can play in the UK shift to clean growth by further understanding:
In our submission we responded to the individual points raised in the call, drawing on two streams of work undertaken as part of the UKERC research programme. The first stream concerns community energy, drawing primarily on data from the UKERC Financing Community Energy project. This project has collected and analysed data from a number of sources:
The second stream draws on a number of recent UKERC publications on electricity systems and networks :
Author(s): Hanna, R., Gross, R., Parrish, B. and Speirs, J.
Published: 2016
Publisher: UKERC
Author(s): Warren, G. and Foulds, C.
Published: 2020
Publisher: UKERC
Part of the Energy-PIECES project, this report was developed during a secondment at the Energy Savings Trust.
Author(s): Cronin, J., Pye, S., Price, J. and Butnar, I.
Published: 2020
Publisher: UKERC
This paper explores the sensitivity of energy system decarbonisation pathways to the role of afforestation and reduced energy demands as a means to lessen reliance on carbon dioxide removal.
The stringency of climate targets set out in the Paris Agreement has placed strong emphasis on the role of carbon dioxide removal (CDR) over this century. However, there are large uncertainties around the technical and economic viability and the sustainability of large-scale CDR options. These uncertainties have prompted further consideration of the role of bioenergy in decarbonisation pathways and the potential land-use trade-offs between energy crops and afforestation. The interest in afforestation is motivated by its potential as an alternative to large-scale bioenergy with carbon capture and storage (BECCS), with its arguably lower risk supply chains, and multiple co-benefits. Furthermore, doubt over the viability of large-scale CDR has prompted a renewed examination of the extent to which their need can be offset by lowering energy demands.
A global optimisation model (TIAM-UCL) was used to examine decarbonisation pathways for the global energy system. Based on core assumptions, where energy demands follow business as usual trends and degraded land is used for energy crops, the model was unable to find a solution for a 1.5°C target. Over the period 2020-2100, the carbon budget of GtCO2 is exceeded by 332 GtCO2.
Scenarios where also run to examine how the least-cost decarbonisation pathway changes if i) energy demands are significantly reduced, or ii) degraded land is used for large-scale afforestation instead of energy crops. Each option on its own reduced the CO2 budget exceedance but both were required to allow the model to meet the 1.5°C target.
Under the 2°C target, afforestation reduced the reliance on BECCS by 60%. Under the 1.5°C target, the system still used all of the biomass available, as the target is so ambitious. When the energy demands were lower, the effect of afforestation on biomass use was dependent on the climate target. Under the 2°C target, less biomass was used across all economic sectors, whereas under the stringent 1.5°C target, all the available wood and crop biomass was exploited, but its use shifted away from the production of liquid fuels towards use in power generation.
Lowering energy service demands had a larger effect on the energy mix than large-scale afforestation. This is because demands are lowered differently across the sectors according to their economic drivers. However, afforestation had a bigger impact on the marginal cost of climate change mitigation, as it substantially decreases the scale and pace of change required by the energy system, especially in the 2°C case.
Given its key role, afforestation should be considered more in deep decarbonisation scenarios, as should lower demand scenarios.
Lowering energy demand and introducing large-scale afforestation both present significant challenges and opportunities. Further work should focus on factors affecting the carbon sequestration potential of afforestation, along with an interdisciplinary research agenda on the scope for large scale energy demand reduction. Research on the social, technical and economic factors that affect the potential for converting abandoned agricultural land to energy crops or new forest would be beneficial. An interdisciplinary research agenda is needed that brings together techno-economic modelling and qualitative scenario development with research on the social change that could lead to large reductions in energy demand
Author(s): Froggatt, A., Kuzemko, C. and Blondeel, M.
Published: 2022
Publisher: UKERC
Author(s): McEwen, N., McHarg, A., Munro, F., Cairney, P., Turner, K. and Katris, A.
Published: 2019
Publisher: UKERC
This briefing paper examines how renewables in Scotland are shaped by decisions taken by the Scottish Government, the UK Government and the EU. Drawing on interviews with stakeholders, it explores the potential impact of Brexit on Scottish renewables.
Brexit has the potential to disrupt this relatively supportive policy environment in three ways in regulatory and policy frameworks governing renewable energy; access to EU funding streams; and trade in energy and related goods and services.
Our briefing identifies varying levels of concern among key stakeholders in Scotland. Many expect policy continuity, irrespective of the future UK-EU relationship. There is more concern about access to research and project funding, and future research and development collaboration, especially for more innovative renewable technologies. The UK will become a third country forthe purposes of EU funding streams, able to participate, but not lead on renewables projects, and there is scepticism about whether lost EU funding streams will be replaced at domestic levels.
While there is no real risk of being unable to access European markets even in a No-Deal Brexit scenario, trade in both energy and related products and services could become more difficult and more expensive affecting both the import of specialist labour and kit from the EU and the export of knowledge-based services. Scotlands attractiveness for inward investment may also be affected.
Author(s): Hinton, E., Holland, R., Austen, M., Taylor, G. (eds.)
Published: 2014
Publisher: UKERC
This Working Paper presents key findings from research conducted within the Energy and Environment theme since 2009, when the second phase of UKERC activity began. Research within this theme has investigated the impacts associated with a range of marine and land-based energy production and greenhouse gas (GHG) mitigation technologies including bioenergy, wind, tidal, gas, nuclear and carbon capture and storage (CCS). The carbon and water footprints of these technologies have been investigated as have their social, economic and environmental impacts and their impacts on terrestrial and marine ecosystem services.
Author(s): Butler. C., Parkhill. K. and Pidgeon. N.
Published: 2012
Publisher: UKERC
This briefing note summarises initial findings from qualitative research undertaken as part of a major project investigating public values, attitudes and views on whole energy system change.
A key objective of the project is to identify degrees of public acceptability relating to various aspects of whole energy system transformation and the trade-offs inherent in such transitions. This research has relevance as a research evidence base for informing development of future energy systems, as well as for understanding processes of and potential obstacles to delivery of such transitions.
Author(s): Chaudry, M., Ekins, P., Kannan, R., Shakoor, A., Skea, J., Strbac, G., Wang, X. and Whitaker, J.
Published: 2011
Publisher: UKERC
This report explores ways of enhancing the resilience of the UK energy system to withstand external shocks and examines how such measures interact with those designed to reduce carbon dioxide (CO2) emissions. The concept of resilience is explored and a set of indicators is developed to define quantitatively the characteristics of a resilient energy system. In the report we systematically test the response of the UK energy system under different scenarios to hypothetical shocks. These are all assumed to involve the loss of gas infrastructure. We then assess mitigating measures which can help to reduce the impact of these shocks and test their cost effectiveness using an insurance analogy.
Author(s): Chaudry, M., Ekins, P., Kannan, R., Shakoor, A., Skea, J., Strbac, G., Wang, X. and Whitaker, J.
Published: 2009
Publisher: UKERC
This report explores ways of enhancing the resilience of the UK energy system to withstand external shocks and examines how such measures interact with those designed to reduce CO2 emissions. The concept of resilience explored and a set of indicators is developed to define quantitatively the characteristics of a resilient energy system. In the report we systematically test the response of the UK energy system under different scenarios to hypothetical shocks. These are all assumed to involve the loss of gas infrastructure. We then assess mitigating measures which can help to reduce the impact of these shocks and test their cost effectiveness using an insurance analogy.
Author(s): Bell, K., Barrett, J., Ekins, P., Eyre, N., Gross, R., Watson, J. and Wright, L
Published: 2017
Publisher: UKERC
The development of a comprehensive industrial strategy for the UK is long overdue. The strategy is an opportunity to bring much needed coherence to economic and industrial policy, and to ensure that it works in tandem with the governments other policies and plans. It is particularly important that the strategy underpins the UKs transition towards a cleaner, low carbon economy. This will only be achieved if it is fully compatible with the Climate Change Act, and is integrated with the forthcoming Emissions Reduction Plan.
The Green Paper includes a welcome confirmation of the governments commitment to reducing greenhouse emissions to meet statutory targets, and to do so whilst meeting other important energy policy goals. Unlike previous statements of energy policy, we are pleased to see that the Green Paper adds a fourth policy goal alongside the familiar trilemmaof emissions r
Author(s): Fawcett, T., Hampton, S. and Mallaburn, P.
Published: 2019
Publisher: UKERC
We welcome the idea of offering more policy support to SMEs to enable the uptake of energy efficiency opportunities, to the benefit of their enterprises, the economy as a whole and the environment. Researchers have previously argued that there is not enough policy focus on SMEs (Banks et al, 2012, Hampton and Fawcett, 2017) and this consultation was valuable as part of a wider process of policy development.
This response covers general issues about design of policy for energy efficiency improvement in SMEs, and offers specific evidence on Option 2: a business energy efficiency obligation.
Author(s): Morgan, N.
Published: 2011
Publisher: UKERC
Author(s): Haszeldine, S., Gilfillan, S. and Wilkinson, M.
Published: 2006
Publisher: UKERC
This meeting follows on from the UK Energy Research Centre annual assembly and brings speakers from leading national positions, who can provide perspectives on success, failure, and future pathways. Will the UK be a leader in climate stabilisation? Or is that moment about to pass?
The focus is on CCS ( carbon capture and storage). This is suite of technologies to capture CO2 at power stations and other concentrated sources, liquefy and transport the CO2, and inject into rock pores deep below ground. The Intergovernmental Panel on Climate Change produced a special report on CCS in 2005, where a worldwide analysis showed that CCS could halve the increase of CO2 emissions by 2100 especially in coal using countries. The UK has claim to a world-class opportunity for CCS, utilising reservoirs deep beneath the North Sea. Will technology, industry, and Government enable thisopportuni
Author(s): White, R., Boardman, B. and Thottath, S.
Published: 2007
Publisher: UKERC
The proposal is that our carbon intensive goods and services should contribute to lower carbon emissions and be redefined in light of climate change. A carbon label has the potential to be an important part of this redefinition, but should be built on a successful consensus about what a carbon label should do, how and how this is best delivered. This briefing paper provides a broad review of evidence and poses pertinent questions surrounding the development of carbon labelling.
This report is split up into a series of questions, each of which includes relevant research findings, key issues and questions and implications of these for further work or labelling. They are highly interactive, as a decision on one has considerable influence on other factors. This report is accompanied by an appendix that contains more in-depth explanations and reviews of pertinent studies, papers an
Author(s): Keay-Bright, S. and Knight, O.
Published: 2006
Publisher: UKERC
This UKERC Meeting Place seminar, co-sponsored by the Sustainable Development Commission and the Department for Food, Environment and Rural Affairs, aimed to achieve three outcomes:
The event set out to engage a multi-di
Author(s): Smith, C., van der Horst, D., Lane, M. & Tingey, M.
Published: 2021
Publisher: CREDS
Author(s): Smith, C., van der Horst, D., Lane, M. & Tingey, M.
Published: 2021
Publisher: CREDS
Author(s): Happer, C., Philo, G. and Froggatt, A.
Published: 2012
Publisher: UKERC
The aim was to examine the specific triggers for changes in patterns of understanding and attitude – and the conditions under which these lead to changes in behaviour. New and innovative methodologies were developed, including the preparation of authentic news broadcasts to present possible future outcomes of climate change and problems with energy security constraint. The results show how beliefs held by audiences can be affected when they receive new information. The conditions under which people believe or reject different arguments are at the heart of the study.
Author(s): Leicester, P. and Rowley, P.
Published: 2017
Publisher: ETI
Author(s): McGlade, C., Ekins, P., Bradshaw, M. and Watson, J.
Published: 2015
Publisher: UKERC
A briefing paper Dr Christophe McGlade and Professor Paul Ekins, UCL Institute for Sustainable Resources and UCL Energy Institute, University College London; Professor Michael Bradshaw, Warwick Business School, University of Warwick; and Professor Jim Watson, UK Energy Research Centre.
The research on which this brief paper draws was carried out by the UK Energy Research Centre (UKERC). The views expressed are those of the authors, rather than of any institution to which they may be affiliated.
Two recently published reports (McGlade & Ekins (2015), McGladeet al.(2014)) examine possible futures for fossil fuels, with a particular focus on the bridging role that natural gas may be able to play during a transition to a global low-carbon energy system. A related report (Bradshawet al.2014) considers the UKs global gas c
Author(s): Bilton, M. and Carmichael, R.
Published: 2015
Publisher: UKERC
To inform the UKERC Technology and Policy Assessment project that is examining consumer attitudes to changes in electricity supply voltage, the TPA team co-funded a working paper together with the Transformation of the Top and Tail of Energy Networks (TTaT), an Engineering and Physical Research Council (EPSRC) Grand Challenge research programme. The working paper draws upon a pilot study exploring consumer experiences and attitudes to appliance malfunction, which aimed to establish prior knowledge about voltage, and understanding of the Distribution Network Operators (DNO) role in supplying power.
Author(s): Stewart, A. and Cluzel, C.
Published: 2011
Publisher: ETI
Author(s): Beard, G., Kinnear, N., Skippon, S., Al-Katib, H., Wallbank, C., Jenkins, D., Anable, J., Stewart, A., Cluzel, C. and Dodson, T.
Published: 2017
Publisher: ETI
Author(s): Kinnear, N., Anable J., Delmonte, E., Tailor, A. and Skippon, S
Published: 2017
Publisher: ETI
Author(s): Watson, J. and Gross, R.
Published: 2017
Publisher: UKERC
This week, the government’s long awaited Clean Growth Strategy will be published. Like many, we will be looking for details of how UK emissions will continue to be reduced to meet the 4th and 5th carbon budgets. In particular, the Strategy will need to explain how a range of increasingly significant policy gaps will be addressed.
The Strategy is likely to be closely followed by the conclusions of the Review of Energy Costs, led by Professor Dieter Helm. Ahead of the Strategy’s publication, we are publishing a briefing paper that covers four key issues that are central to the terms of reference of the Review of Energy Costs – and to the Clean Growth Strategy itself.
Our starting point is that the primary issue is the cost of energy bills for consumers, rather than only the unit price of energy. It is therefore important to focus on measures that can reduce the quantity of energy required for a given level of service as well as trends that could help to reduce or moderate prices. In line with the terms of reference, our briefing paper focuses on electricity costs since UK electricity prices are higher up the European league table than those for gas.
The role that energy efficiency can play in reducing electricity bills needs to be fully addressed. Significant progress in this area remains to be made; savings of up to 10% can be achieved through well designed standards and investment programmes, and a recent UKERC report highlighted that a 25% reduction in household energy demand is possible through cost effective measures. There is a clear rationale for government intervention, to drive energy efficiency and address the policy gap left behind by the failure of the Green Deal. The case is even clearer when considering the additional economic and social benefits that energy efficiency brings.
The creation of new markets help drive technology cost reductions, as does patient government support. Offshore wind is a case in point - achieving much lower than expected prices in the recent Contracts for Difference auctions. If these projects are delivered, this will place offshore wind amongst the cheapest new sources of electricity generation in the UK.
Policy change is required to drive further innovation, yet with investor confidence low, this needs to build on existing policy instruments. A case has been made for moving low carbon technologies into a single competitive auction. However this technology neutral approach favours technologies close to market, failing those which are less developed. Complex technologies such as carbon capture and storage, which have significant potential but high capital expenditure and associated risk, could require a state-led approach to investment, allowing for competition to drive prices down.
The review’s terms of reference clearly state that a systems approach is required. The consideration of technologies within this perspective is imperative, as is developing energy policy within this context. This is particularly relevant for electricity, where a range of mechanisms and markets are used to balance supply and demand in real time.
System flexibility is key to keeping costs down. The cost of integrating renewables into the grid vary widely, with future cost of integrating intermittent power sources, depending upon the availability of cost effective system flexibility. Incentivising flexibility and reforms to the capacity market will be required to facilitate this, and as the proportion of renewables increases, government will need to decide how to account for system costs including those surrounding intermittency.
Innovation is an important driver for reducing costs and bringing technologies to market. However this non-linear process exists with multiple feedbacks between development, demonstration and deployment. Effectiveness is further dependent on incentives for demonstration and market creation, and UKERC research has shown that innovation in the energy sector tends to take three to four decades from early stage R&D to significant commercial deployment.
Analysis has been undertaken by government to establish this evidence base, yet too often this has focused on discrete technologies, with less attention paid to system innovation. It is this system innovation which will be key to the low carbon transition, alongside effective evaluation, to learn and disseminate lessons.
Eye catching initiatives such as the Faraday Challenge for storage are welcome, as is the UK pledge - as part of Mission Innovation - to double clean energy R&D spending between 2015-2020. Whilst a step in the right direction, when considering the scale of the challenge posed by climate change, many argue that government support for innovation at a greater scale is required.
Download the briefing note to read the full submission to Dieter Helm.
Author(s): Watson, J., Gross, R., Bell, K., Waddams, C., Temperton, I., Barrett, J., Rhodes, A., Gill, S. and Bays, J
Published: 2017
Publisher: UKERC
We welcome the opportunity to comment on the findings of the Cost of Energy Review, conducted by Professor Dieter Helm. In our response, we address most of the questions set out in the Call for Evidence from BEIS. Before turning to these specific questions, we have three general observations about the Review and the Call for Evidence.
First, whilst the review title focuses on the cost of energy, this is misleading. The terms of reference and the Review report make it clear that the main focus is electricity rather than energy in general.
This distinction is important since the data shows significant differences in the position of UK electricity and gas costs when compared to costs in other countries. There are also differences between relative costs for households and relative costs for business energy consumers. UK electricity prices are higher up the European league table than prices for gas. Electricity prices for energy intensive industries in the UK are particularly high.
Our second comment is that there are important distinctions between prices, costs and bills. Whilst much of the debate focuses on prices, the costs of energy for consumers also depends on their energy consumption. Therefore, it is also important to consider energy efficiency of buildings, appliances and industrial processes since these are a key determinant of costs.
Our third comment is that costs need to be considered for the electricity system as a whole. Whilst the separate questions in the Call for Evidence about generation, networks and retail supply are understandable, costs to consumers partly depend on interactions between these components of the electricity system. This compartmentalised approach to the evidence base could mean that some of these systemic interactions are missed.
Author(s): Gross, R., Bradshaw, M., Bell, K .and Webb, J.
Published: 2023
Publisher: UKERC
We welcome the re-assertion of key policy objectives and the commitment to a whole system approach described in the strategy. In our response we highlight a number of key areas that need to be addressed including the need for geographical specificity, and a hierarchy of objectives along with the introduction of low and stable prices as one of these objectives.
Author(s): Haslett, A.
Published: 2017
Publisher: ETI
Author(s): Winskel, W., Markusson, N., Moran, B., Jeffrey, H., Anandarajah, G., Hughes, N., Candelise, C., Clarke, D., Taylor, G., Chalmers, H., Dutton, G., Howarth, P., Jablonski, S., Kalyvas, C. and Ward, D.
Published: 2009
Publisher: UKERC
This is the second in a series of reports arising from UKERCs Energy 2050 project. The report considers the prospects for accelerated development of a range of emerging low carbon energy supply technologies and the possible impact of this acceleration on decarbonisation of the UK energy system. The technologies analysed here include a number of renewables (wind power, marine energy, solar PV and bioenergy) and other emerging low carbon technologies (advanced designs of nuclear power, carbon capture and storage (CCS) and hydrogen / fuel cells). The report presents a set of scenarios devised by UKERC to illustrate how accelerated development of these technologies could contribute to decarbonisation of the UK energy system from now to 2050. The results suggest that technology acceleration could have a major influence on UK decarbonisation pathways, especially in the longer term.
Author(s): Froggatt, A. and Hadfield. A.
Published: 2015
Publisher: UKERC
Author(s): Gross, R., Blyth, W., MacIver, C., Green, R., Bell, K. and Jansen, M.
Published: 2022
Publisher: UKERC
UKERCs response provides commentary and analysis on many of the wide range of topics encompassed in the consultation. This includes the overall vision and objectives, case for change, the evaluation criteria defined by BEIS, locational pricing and local markets, lessons from other countries, changes to wholesale markets and incentives for low carbon generation, flexibility and capacity.
Our response provides detailed and evidence-based analysis on each of these complex topics, drawing on UKERC research and wider outputs. We highlight some of the complex trade-offs involved and argue for a cautious and gradualist approach that builds on the progress already made in some areas.
Author(s): Ketsopoulou, I., Taylor, P., Watson, J., Winskel, M., Kattirtzi, M., Lowes, R., Woodman, B., Poulter, H., Brand, C., Killip, G., Anable, J., Owen, A., Hanna, R., Gross, R. and Lockwood, M.
Published: 2019
Publisher: UKERC
The in-depth analysis presented in this report focuses on four key areas of the economy, highlighting how they may need to change to remain competitive and meet future carbon targets.
The report identifies how policy makersplan for disruptions to existing systems. With the right tools and with a flexible and adaptive approach to policy implementation, decision makers can better respondto unexpected consequences and ensure delivery of key policy objectives.
Author(s): Winskel, M. and Kattirtzi, M.
Published: 2019
Publisher: UKERC
There is an increasing sense of urgency about the global energy system transition. For many observers an urgent energy transition is also a necessarily disruptive one, in that it is only by radically remaking energy systems that an accelerated transition to low carbon and sustainable energy can be achieved.
Closer to home, there has been substantial progress in some parts of the energy system in the decade since the passing of the UK and Scottish Climate Change Acts. Other areas have shown little sign of change, and the transition ahead may well be more disruptive and intrusive than that seen so far. At the same time, there is also an emerging counter-narrative: that repurposing our existing energy assets (physical and social) offers the best and quickest transition path, since there is insufficient time to disrupt and remake.
Attending energy events and keeping up-to-date with emerging evidence can instil a sense of different experts talking past each other. For those involved in whole systems energy research, and working at the research-policy interface, this can be deeply frustrating. To help address this, UKERC – working with ClimateXChange (CXC), Scotland’s Centre of Expertise on Climate Change – has spent two years analysing disruption and continuity in the UK energy system.
As part of that work, we surveyed around 130 experts and stakeholders about disruption and continuity-led change in the UK energy transition. The experts were mostly UK based researchers working on ‘whole systems’ research projects, but also included policymakers, advisory bodies, think tanks, businesses (old and new) and civil society organisations. This report presents the results of this survey work.
Author(s): Gross. R. and Watson. J.
Published: 2015
Publisher: UKERC
Overview
A series of energy policy changes announced since the May election have led to concerns about increasing political risk faced by prospective investors in the UK energy system (ECCC 2015). It has also been suggested that policy needs to be ‘reset’, with less technology-specific intervention and increased resources for longer term research into new technologies (Helm 2015). This paper draws on a large body of analysis from UK Energy Research Centre (UKERC) and Imperial College.
The paper argues that a ‘reset’ approach is unnecessary, will create delays to investment, increase political risks, and hence costs to consumers. Simply put, the government already has the levers it needs to encourage investment in a secure and lower carbon system. Policy can be made more effective by providing investors with greater clarity and a longer term perspective, using the policy framework that is already in place. Auctions for Contracts for Difference (CfDs) have already brought forward significant reductions in the prices paid to low carbon generators. CfDs could be moved progressively to a technology neutral basis, combined with price caps to bear down further on costs.
The paper discusses the infrastructure implications of new sources of energy and notes that government will need to balance the benefits of technology neutral CfD auctions against the need to develop strategic infrastructure in a timely fashion. It also discusses the impacts of variable renewables and explains that whilst it is important for system costs to be allocated cost effectively this does not mean that variable generators should be obliged to self-balance and invest in dedicated back up.
The paper also explains that whilst greater investment in innovation would be welcome, forthcoming research shows the timescales associated with invention, demonstration and deployment of technology are long. Whilst improvements to technologies are hugely important, the emergence of entirely new technologies remains very uncertain. Support for innovation should not be premised on wishful thinking about silver bullet technologies. Many of the technologies we need to decarbonise already exist and have done so for several decades. The challenge is to drive costs down and encourage network innovation to better suit new sources of power.
Finally, the paper argues that whilst more effective carbon pricing would bring many benefits it is not a sufficient condition for significant energy system change. Regulation iv UK Energy Research Centre of emissions from existing coal fired power stations after 2025 would aid investor clarity and improve the prospects for investment in both low carbon and gas-fired generation.
Author(s): Norris, J. and Mueller, M.
Published: 2005
Publisher: UKERC
The following points emerged as the most important:
Author(s): Lipson. M.
Published: 2015
Publisher: ETI
Author(s): ETI
Published: 2013
Publisher: ETI
Author(s): ETI
Published: 2015
Publisher: ETI
Author(s): Newton-Cross, G. and Evans, H.
Published: 2015
Publisher: ETI
Author(s): Evans, H. and Newton-Cross, G.
Published: 2016
Publisher: ETI
Author(s): Dutton. J.
Published: 2015
Publisher: UKERC
Energy has been a central feature of the EU since inception as the European Coal and Steel Community (ECSC) in the 1950s. A mainstay of successive policies has been to introduce ‘singularity’ in to the sphere of energy at different scales – for example, from a narrow central pooling of physical resources, as with the ECSC, to much broader attempts at introducing a liberalised single market place for gas and electricity, and proposals for a single gas buyer mechanism under the 2015 Energy Union framework. These moves were typically internal responses to external events, such as the Arab oil embargoes or geopolitical tension between Russia and eastern European countries. To achieve the goal of a single internal energy market policies have sought to remove or reduce the friction placed on cross-border trade, governance and regulation of energy by often contradictory and conflicting national policies of member states. This has taken the form of specific and targeted pieces of legislation aimed at technical harmonisation, as well as wide-reaching sets of policies to overhaul entire sectors and governance and regulatory practice across all member states.
A recently published working paper written by Joseph Dutton of the University of Exeter Energy Policy Group as part of the Energy systems at multiple scales programme sets out the path along which EU energy policy has moved since the initial creation of the organisation in the 1950s, detailing the principle documents and legislation upon which the current and proposed policies were constructed.
Author(s): Bell, K., Blyth, W., Bradshaw, M., Green, R., Gross, R., Jansem, M., Ostrovnaya, A. and Webb, J.
Published: 2022
Publisher: UKERC
Author(s): Eyre, N. and Wilson, C.
Published: 2013
Publisher: UKERC
This document sets out a response of the UK Energy Research Centre (UKERC) to the Department of Energy and Climate Changes (DECC) consultation Electricity Demand Reduction.
In our response to the consultation on electricity market reform (EMR) we noted the potential importance of demand reduction and demand side response in achieving the Governments goals for the electricity sector of security, emissions reduction and reasonable cost.
All our responses are based on evidence from research by UK academic researchers independent of commercial or other vested interest. One particular focus of the response is on the option of premium payments (otherwise known as energy saving feed-in tariffs). UKERC supported research (Eyre, 2013) is the first peer reviewed academic literature on this topic in the world. We believe that an approach along these linesis consistent with addressing a market bias against energy saving that would otherwise be introduced by EMR proposals in their current form. We begin the response with four key concerns about the evidence base used in the consultation document and its supporting literature. We then respond to some specific questions identified in the consultation document itself.
Author(s): Anderson, D.
Published: 2007
Publisher: UKERC
The paper first discusses estimates of the levelised costs of selected technologies and the corresponding rates of return under alternative assumptions as to prices. It then shows how such estimates can be refined to allow for the variability of demand, changes in plant dispatching schedules, storage and so forth. Next it considers the effects of environmental policies and innovation on costs and the rate of return. Finally it considers the issues posed by uncertainty and risks. By beginning with the simple cases of levelised costs and average returns, and then by gradually peeling away assumptions, the aim is to gradually reveal the fundamentally different perspective that arises when the rate of return becomes the focus of investment.
Author(s): Baker, P.E., Mitchel, C. and Woodman, B.
Published: 2010
Publisher: UKERC
This paper considers GB electricity market and network regulatory arrangements in the context of transitioning to a low carbon electricity system. By considering some of the primary features of a low carbon electricity system and building on themes raised by a previous UKERC Supply Theme paper (Baker, 2009), the paper attempts to identify what characteristics an appropriate market and regulatory framework would need to posses. The paper goes on to consider how existing market arrangements perform in these areas and the possible need for change.
The aim of the paper is to contribute to the debate on energy market reform that is now underway. Currently, discussion seems to be focussing primarily on how to ensure adequate investment in low carbon and, in the medium term, conventional generation to meet the UKs climate change and security of supply goals. Delivering the necessary generation capacity is clearly crucial and by reviewing some of the mechanisms that could be used to encourage investment, this paper attempts to contribute in this area. However, the paper also addresses other areas where reform may be required but that have, to date, received less attention; issues such as arrangements to ensure efficient dispatch and energy balancing, efficient mechanisms to deal with network congestion and measures necessary to facilitate demand side participation.
The approach taken by the paper is incremental in nature, focussing on how current market arrangements may need to develop in the coming years, rather than proposing radical change. It is likely that successfully decarbonising the electricity sector may ultimately require a fundamentally different market design and that change, particularly in relation to low-carbon investment, may be requiredsooner rather than later. However, the transition to a low carbon electricity system will be gradual and arguably best served by incremental change in response to demonstrated need.
Author(s): UKERC and the Imperial College London Centre for Energy Policy and Technology
Published: 2011
Publisher: UKERC
This meeting of independent experts addressed institutional arrangements for implementing UK Electricity Market Reform (EMR). It was convened jointly by the UK Energy Research Centre (UKERC) and the Imperial College Centre for Energy Policy and Technology (ICEPT). Institutional issues are closely tied to arrangements for a proposed Capacity Mechanism. Discussions at the workshop reflected this link.
Author(s): UKERC
Published: 2011
Publisher: UKERC
The meeting considered both the general shape of the Electricity Market Reform (EMR) package and the four specific elements proposed in the Department for Energy and Climate Change (DECC) and HM Treasury (HMT) consultations. This summary covers first the generic aspects and then, more briefly, the four specific elements.
Author(s): Hitachi, EDF Energy, Imperial College London, Element Energy
Published: 2013
Publisher: ETI
Author(s): Batterbee, J.
Published: 2013
Publisher: ETI
Author(s): Hitachi, EDF Energy, Imperial College London, Element Energy
Published: 2013
Publisher: ETI
Author(s): Brand, C., Anable, J. and Dixon, J.
Published: 2020
Publisher: UKERC
The UK Government has been seeking views on bringing forward the end to the sale of new petrol, diesel and hybrid cars and vans from 2040 to 2035, or earlier if a faster transition appears feasible. In this joint UKERC/CREDS consultation response we provide views on the following aspects:
A phase out date of 2035 or earlier is sensible yet it might not be enough. Our research, recently published in the journal Energy Policy, has found that neither existing transport policies nor the pledge to bring forward the phase out date for the sale of new fossil fuel vehicles by 2035 or 2040 are sufficient to hit carbon reduction targets, or make the early gains needed to stay within a Paris compliant carbon budget for cars and vans.
Our research has shown that deeper and earlier reductions in carbon emissions and local air pollution would be achieved by a more ambitious, but largely non-disruptive change to a 2030 phase out that includes all fossil fuel vehicles. This would include all vehicles with an internal combustion engine, whether self-charging or not. However, only the earlier phase outs combined with lower demand for mobility and a clear and phased market transformation approach aimed at phasing out the highest-emitting vehicleswould make significant contributions to an emissions pathway that is both Paris compliant and meets legislated carbon budgets and urban air quality limits.
The proposed policy will involve high levels of coordination, intention and buy-in by policy makers, business and wider civil society. By far the biggest barrier to change will be the incumbent industries the original equipment manufacturers (OEMs). They have a well-known track record of pushing back against EU vehicle regulations on the grounds of cost. In the case of electric powertrains, this push back is evident, with added resistance on the base of restricted supply chains and time to alter production processes. We suggest this is all the more reason to publish and implement a market transformation strategy now so that early wins which do not rely on supply chains or large transformations to the production line can mitigate against any later genuine supply-side constraints. Such a clear policy steer from the UK government is needed in order to ensure that UK consumers have more choice of cars than they may otherwise get if the OEMs restrict their sales of the most efficient vehicles into the UK market once out of the EU regulatory regime.
UKERC research into various phase-out policies has looked at how disruptive they would be for key stakeholders of the transport-energy system, and how much coordination would be needed to achieve the policy goals. This research has shown that in the Road-to-Zero ICE phase out by 2040 the main actors of the road transport and energy system are unlikely to undergo disruptive change. This is due to the relatively slow and limited evolution of the fleet towards unconventional low carbon fuels, the continuation of fuel duty revenue streams well into the 2040s and little additional reductions in energy demand and air pollutant emissions.
However, in the earlier (2030) and stricter (in what constitutes an ultra-low carbon vehicle) phase-outs we can expect some disruption for technology providers, industry and business in particular vehicle manufacturers, global production networks, the maintenance and repair sector as well as the oil and gas industry. There will also be localised impacts (some potentially disruptive) on electricity distribution networks and companies, even with smart charging.
Ending the sale of new petrol, diesel and hybrid cars and vans earlier, coupled with the electrification of road transport should form a key part of long term decarbonisation policy, but it is not a panacea. First, an earlier phase out date of 2030 implies we have 10 years to plan for and implement a transition away from fossil-fuel ICE cars and vans. As we discussed in our response, our research suggests that this is achievable without significant disruption to the transport-energy system, but it needs to be linked to accelerated investment in charging networks, battery development and deployment, increased market availability of zero-emission vehicles, and equivalent-value support by the Government to level the playing field with the incumbents. Second, our research has shown multiple times that further and earlier policy measures that impact the transport-energy system are needed, including a clear and phased market transformation approach that targets high-emitting vehicles, access bans in urban areas, and dynamic road pricing that could fund an order of magnitude increase in investment in sustainable transport modes.
We support bringing the phase-outdate forward and urge it to be earlier than 2035 and include phasing out any non-zero tailpipe vehicles using a market transformation approach. We strongly believe Government has a crucial role to play in leading the way to decarbonise transport, going well beyond the proposed policy change of bringing forward the end to the sale of new petrol, diesel and hybrid cars and vans from 2040 to 2035 or earlier.
Author(s): Evans, B. and Palmer, J.
Published: 2006
Publisher: UKERC
The workshop presentations and the ensuing discussion clearly underlined the UK potential for community energy initiatives. There are in the region of 500 community energy projects currently in the UK, demonstrating a wide range of technologies and approaches. However, although these projects will generate a considerable amount of kilowatts, it is equally important to recognise other roles that they may play. The contribution of projects to, for example, combating social exclusion or increasing public understanding of renewable energy technologies may be as important as power generation or energy conservation.
Author(s): Anable, J., Brand, C., Eyre, N., Layberry, R., Bergman, N., Strachan, N., Fawcett, T., and Tran, M.
Published: 2011
Publisher: UKERC
This report is one of a series of working papers in the UKERC Energy 2050 project series. It investigated the role of pro-environmental lifestyle change for the UK energy system to 2050. We make two assumptions, both of which seem obvious when stated, but are frequently forgotten or ignored in energy futures work. The first is that the behaviour of energy users is not fixed, but rather the outcome of developments in society, and that these are uncertain with the level of uncertainty increasing over time. The second is that any policy framework that seeks to deliver major changes in the energy system, such as an 80% reduction in CO2 emissions, will be the outcome of a political process in which civil society, i.e. energy users in other roles, will play a key role.
We have used an innovative methodology to combine the strengths of detailed end use models (UK Domestic Carbon Model and UK Transport Carbon Model, both developed at the ECI) and a cost-optimisation model of the whole UK energy system (MARKAL Elastic Demand, developed at UCL).
Author(s): Wade. J. and Eyre. N.
Published: 2015
Publisher: UKERC
Research for the UK Energy Research Centre’s Technology and Policy Assessment (TPA) function shows the importance of increased policy support for energy efficiency programmes, after a strategic review found savings in the region of 10% for well designed and implemented programmes. While multiple policies and programmes have been implemented in the past to encourage improvements in household efficiency, both in the UK and globally, the robustness and accuracy of programme evaluations have been called into question.
The authors carried out a systematic review of the evidence base of peer-reviewed evaluation programmes, drawn from conference papers and 20 different journals, in order to find out what works and where the gaps are, and to inform future programme design.
Author(s): Speirs, J., Gross, B., Gross, R. and Houari, Y.
Published: 2013
Publisher: UKERC
Welcome to the Energy Materials Availability Handbook (EMAH), a brief guide to some of the materials that are critical components in low carbon energy technologies. In recent years concern has grown regarding the availability of a host of materials critical to the development and manufacturing of low carbon technologies.
In this handbook we examine 10 materials or material groups, presenting the pertinent facts regarding their production, resources, and other issues surrounding their availability. Three pages of summary are devoted to each material or material group. A how to use guide is provided on the following pages.
Author(s): Pye, S., Sabio, N. and Strachan, N.
Published: 2014
Publisher: UKERC
Policy goals to transition national energy systems to meet decarbonisation and security goals must contend with multiple overlapping uncertainties. These uncertainties are pervasive through the complex nature of the system, and exist in a strategic policy area where the impact of investment decisions have long term consequences. Uncertainty also lies in the tools and approaches used, increasing the challenges of informing robust decision making. Energy system studies in the UK have tended not to address uncertainty in a systematic manner, relying on simple scenario or sensitivity analysis. This paper utilises an innovative energy system model, ESME, which characterises multiple uncertainties via probability distributions and propagates these uncertainties to explore trade-offs in cost effective energy transition scenarios. A global sensitivity analysis is then undertaken to explore t
Author(s): Slade, R., Saunders, R., Gross, R. and Bauen, A.
Published: 2011
Publisher: UKERC
This report aims to support informed debate about the amount of biomass that might be available globally for energy, taking account of sustainability concerns. It uses a systematic review methodology to identify and discuss estimates of the global potential for biomass that have been published over the last 20 years. The assumptions both technical and ethical that lie behind these are exposed and their influence on calculations of biomass potential described.
The report does not seek to determine what an acceptable level of biomass production might be. What it does is reveal how different levels of deployment necessitate assumptions that could have far reaching consequences for global agriculture, forestry and land use; ranging from a negligible impact to a radical reconfiguration of current practice. The report also examines the insights the literature provides into the interactions between biomass production, conventional agriculture, land use, and forestry.
Author(s): Holland, R., Beaument.,N., Austen.,M., Gross.,R., Heptonstall, P., Watson, J. and Taylor, G.
Published: 2015
Publisher: UKERC
Author(s): Brocklehurst, F., Bennett, G., Boardman, B., Eyre, N., Fawcett, T., Lo Piano, S., Smith, S. and Torriti, J.
Published: 2020
Publisher: CREDS
Author(s): Jones Lang LaSalle Ltd (JLL)
Published: 2018
Publisher: ETI
Author(s): Energy Systems Catapult
Published: 2018
Publisher: ETI
Author(s): Cook, S. and Morgan, J.
Published: 2016
Publisher: ETI
Author(s): Jones Lang LaSalle Ltd (JLL)
Published: 2018
Publisher: ETI
Author(s): Bell, D., Hopkins, M. and Winter, S.
Published: 2018
Publisher: ETI
Author(s): Lorenzoni, I., ONeill, S., Whitmarsh, L., Otoadese, J., Keay-Bright, S. and John, K.
Published: 2008
Publisher: UKERC
The aim of the workshop was to bring together academics and practitioners from different disciplines and backgrounds in order to ultimately inform more effective approaches to public communication of, and engagement with, climate change and energy reduction. The overarching question to be addressed by the workshop was, What can empirical and theoretical studies of communication and behaviour change tell us about how we might move towards a more climate-friendly (low-carbon, climate resilient) society?. More specifically the workshop objectives were to: share cutting-edge research and practice; foster learning across disciplines and contexts; identify gaps in understanding; form new interdisciplinary contacts and networks; consider and generate new insights; stimulate novel collaborations; provide the contents for a book and a workshop report that would beuseful for academics, practit
Author(s): Lorenzoni, I, ONeill, S, Whitmarsh, L, Otoadese, J, Keay-Bright, S. and John, K
Published: 2008
Publisher: UKERC
The aim of the workshop was to bring together academics and practitioners from different disciplines and backgrounds in order to ultimately inform more effective approaches to public communication of, and engagement with, climate change and energy reduction. The overarching question to be addressed by the workshop was, “What can empirical and theoretical studies of communication and behaviour change tell us about how we might move towards a more ‘climate-friendly’ (low-carbon, climate resilient) society?”. More specifically the workshop objectives were to: share cutting-edge research and practice; foster learning across disciplines and contexts; identify gaps in understanding; form new interdisciplinary contacts and networks; consider and generate new insights; stimulate novel collaborations; provide the contents for a book and a workshop report that would be useful for academics, practitioners and policy-makers. Central to the workshop were three sessions relating to the overarching question: models, messages and media. These sessions involved 10 minute presentations from each of three presenters and a 10 minute response from an invited discussant.
Author(s): Hanna, R., Heptonstall, P., Gross, R., Wade F. and Webb, J.
Published: 2021
Publisher: UKERC
Author(s): Holloway, S. and Rowley, W.J.
Published: 2008
Publisher: UKERC
This working paper analyses the environmental sustainability of four electricity production systems that include carbon dioxide capture and storage (CCS):
The analysis is based largely on a review of relevant Life Cycle Assessments (LCAs). Thus it considers the environmental sustainability of the entire electricity generation chain from fuel extraction through electricity generation and CO2capture to CO2 storage.
Author(s): Ekins, P. and Salmons, R.
Published: 2010
Publisher: UKERC
There is increasing scientific evidence that natural systems are now at a level of stress globally that could have profound negative effects on human societies worldwide. In order to avoid these effects, one, or a number of technological transitions will need to take place through transforming processes of eco-innovation, which have complex political, institutional and cultural, in addition to technological and economic, dimensions. Measurement systems need to be devised that can assess to what extent eco-innovation is taking place. Environmental and eco-innovation have already led in a number of European countries to the establishment of substantial eco-industries, but, because of the general absence of environmental considerations in markets, these industries are very largely the result of environmental public policies, the nature and effectiveness of which have now been assessed through a number of reviews and case studies. The paper concludes that such policies will need to become much more stringent if eco-innovation is to drive an adequately far-reaching technological transition to resolve pressing environmental challenges. Crucial in the political economy of this change will be that eco-industries, supported by public opinion, are able to counter the resistance of established industries which will lose out from the transition, in a reformed global context where international treaties and co-operation prevent the relocation of environmentally destructive industries and encourage their transformation.
Author(s): Hawkey, D.
Published: 2015
Publisher: ETI
Author(s): Skea, J.
Published: 2005
Publisher: UKERC
The UK Energy Research Centre welcomes this opportunity to provide input to the Stern Review on the Economics of Climate Change.
The Centre was established in 2004 following a recommendation from the 2002 review of energy initiated by Sir David King, the UK Government’s Chief Scientific Advisor. It is funded by three research councils: the Engineering and Physical Sciences Research Council (EPSRC), the Natural Environment Research Council (NERC) and the Economic and Social Research Council (ESRC). We take a co-ordinated and collaborative approach to national and international energy research, and through our own interdisciplinary research activities, we intend to provide the knowledge needed to work towards a sustainable energy system and realise UK energy policy goals.
We are a distributed Centre operated by a consortium of eight universities and research institutions. Our work is relevant to items 1 and 4 of the Review Terms of Reference, i.e.
Four of our research themes are undertaking research relevant to the Review. These are:
Author(s): Buckman, A.
Published: 2017
Publisher: ETI
Author(s): Roddis, P. and Robison, R.
Published: 2020
Publisher: UKERC
Social Value is a rising policy agenda in the UK, formalised in legislation by the Public Services (Social Value) Act 2012. It refers to social, economic and environmental benefits whose value is not captured in financial flows. Whilst multiple tools and methodologies are available to measure Social Value, there is little consensus on which method is best to use in different contexts. This report reviews options and considers how best to measure Social Value in the context of major energy infrastructure projects such as HPC.
The report finds that value is highly contingent and subjective, and that what is valuable is not always tangible. It therefore emphasises the importance of qualitative measures of Social Value alongside quantitative data or monetary estimates, recognising the limits of assigning financial values to some types of outcome. It also stresses the importance of involving stakeholders to find out what matters to them and what they most value.
Delivered as part of the Energy-PIECES project this report was developed during a secondment at EDF Energy
Author(s): Blyth, W.
Published: 2006
Publisher: UKERC
This report provides a brief review of how risks can be incorporated into investment decisions, and how financial analysis needs to go beyond an assessment of levelised costs in order to adequately represent the different sources of risk that a new power plant investment will face in competitive markets.
Author(s): Deller, D., Waddams, C., Errington, E., Fletcher, A., Hargreaves, T., Harker, M., Longhurst, N., Reader, D. and Turner, G.
Published: 2018
Publisher: Centre for Competition Policy (University of East Anglia) and UKERC
Concern about fairness in the retail energy market is clear from media headlines and the passing of legislation to impose a wide price cap in the retail energy market in 2018. Fairness in Retail Energy Markets? Evidence from the UK provides extensive evidence from a range of disciplines to inform this important debate. This report does notattempt to define what constitutes fair or unfair, since this ultimately rests in the eye of the beholder. Nevertheless, its message is clear: development of the retail energy market in the UK can only be understood by recognising the political economy around questions of distribution and fairness.
A multi-disciplinary perspective
The publication reports research conducted at the Centre for Competition Policy, University of East Anglia, as part of the UK Energy Research Centres programme. The research is multi-disciplinary, drawing together researchers from a range of disciplines: economists, legal scholars, human geographers and a policy analyst. This range of specialisms provides a rare opportunity to consider fairness and retail energy markets in the round. The research team is both unusually broad and academically independent. The reports five main chapters present findings from different disciplines and methodologies to stimulate consideration of evidence which is rarely encountered together. In assembling this evidence the researchers are grateful to our partners Broadland Housing Association, Cornwall Energy and Ofgem, as well as to the Parliamentary Archive and all our interviewees.
The report presents findings under five broad themes: (i) how long-term outcomes contextualise the retail energy markets political salience; (ii) how distributional objectives feed into institutions; (iii) the multi-faceted nature of engagement with energy; (iv) the detailed experiences of those at risk of FP; and (v) how data/statistics can be improved.
Together the evidence raises fundamental issues for the future governance of the market. The traditional focus of economics on efficiency has never claimed that markets are effective tools for delivering equitable outcomes, and the traditional framework of pure economic regulation is challenged by the focus on fairness. Can the market ever escape political intervention when energy prices rise substantially? This question is particularly relevant when key affordability support policies the Winter Fuel Payment and the initial Fuel Poverty Strategy were introduced as energy was approaching its mostaffordable level over a 30-year time horizon.
Energys political salience has meant that the independence of the market regulator, Ofgem, has evolved in a way not originally envisioned. Government has increased the number and complexity of Ofgems statutory duties. The resulting ambiguity regarding how to prioritise the regulators different duties has led to increased government-regulator communication and the potential for government to exert pressure on the regulator through less formal channels.
We present evidence indicating that there are problems with implementing the main frame used to address energy fairness in the UK, namely fuel poverty. We suggest that the approach to analysing fuel poverty, and the associated policymaking, would benefit from a change of direction, towards a focus on the directly observable real-world phenomenawhich underpin this complex problem, rather than on the official fuel poverty statistics. Such an approach would help to recognise that energy efficiency interventions are unlikely to solve all the energy affordability challenges facing households.
Author(s): Eyre, N.
Published: 2013
Publisher: UKERC
Energy saving feed-in tariffs (ESFITs) are a relatively new concept and are designed to use the same principles as Feed in Tariffs for renewable energy (REFITs). They offer a promising way of improving electricity efficiency and reducing electricity demand, thereby decreasing carbon emissions.
The Electricity Market Reform proposals which form part of the 2012 Energy Bill provide a bias towards investment in new supply that could be addressed using ESFITs.
In the context of EMR, ESFITs offer a means of delivering decarbonisation with a lower impact on consumer bills.
Because ESFITs do not rely on energy companies, they would provide incentives for innovation in project delivery in a much wider range of actors including householders, community groups, local authorities and small businesses.
The concept of ESFITs is simple, but there are policy design issues that still need to be addressed.
Author(s): Cairns, I., Hannon, M., Braunholtz-Speight, T., Hardy, J., McLachan, C., Mander, S., Manderson, E. and Sharmina, M.
Published: 2020
Publisher: UKERC
Commencing in 2016, the Financing Community Energy project provides a comprehensive quantitative and qualitative analysis of the role of finance in the evolution of the UK community energy sector. This report presents the final of our four case studies of UK community energy organisations, exploring how these organisations have sought to finance their projects against a backdrop of diminishing government support for grassroots sustainable development.
Established in 2013, Brighton and Hove Energy Services (BHESCo) primary focus was to develop both renewable energy and energy efficiency projects, whilst also ensuring people have equal access to energy. BHESCo is rather unlike our other community energy case studies in that it operates very much like an Energy Services Company (ESCo), where they accept some degree of responsibility to provide the energy service that its customers ultimately desire (e.g. lighting, ambient temperature), rather than the straightforward supply of heat or electricity.
Author(s): Cairns, I., Hannon, M., Braunholtz-Speight, T., Hardy, J., McLachan, C., Mander, S., Manderson, E. and Sharmina, M.
Published: 2020
Publisher: UKERC
This report presents a case study of Edinburgh Community Solar Cooperative, exploring how it financed the project against a backdrop of diminishing government support for grassroots sustainable development.
This report presents the first of four case studies of UK community energy organisations, exploring how these organisations have sought to finance their projects against a backdrop of diminishing government support for grassroots sustainable development.
Edinburgh Community Solar Cooperative (ECSC) is a Community Benefit Society (BenCom). Its objectives are a combination of environmental and social, with an explicit focus on reducing emissions, alleviating fuel poverty, improving energy security and promoting sustainable development education.
ECSC quickly settled on renewable power generation as a means of delivering this combination of environmental andsocial value. Today it operates 1.4 MW of solar PV panels on the roofs of 24 council-owned properties in Edinburgh, including schools, leisure centres and community halls.
Author(s): Cairns, I., Hannon, M., Braunholtz-Speight, T., Hardy, J., McLachan, C., Mander, S., Manderson, E., Sharmina, M.
Published: 2020
Publisher: UKERC
Commencing in 2016, the Financing Community Energy project provides a comprehensive quantitative and qualitative analysis of the role of finance in the evolution of the UK community energy sector. This report presents the second of four case studies of UK community energy organisations, exploring how these organisations have sought to finance their projects against a backdrop of diminishing government support for grassroots sustainable development.
Green Energy Mull (GEM) is a Community Benefit Company (BenCom) that owns and operates Garmony Hydro; a 400 kW run-of-the-river hydro scheme on the island of Mull, off the west coast of Scotland.
Author(s): Cairns, I., Hannon, M., Braunholtz-Speight, Tim., Hardy, J., Mclachan, C., Mander, S., Manderson, E., Sharmina, M.
Published: 2020
Publisher: UKERC
Commencing in 2016, the Financing Community Energy project provides a comprehensive quantitative and qualitative analysis of the role of finance in the evolution of the UK community energy sector. This report presents the third of four case studies of UK community energy organisations, exploring how these organisations have sought to finance their projects against a backdrop of diminishing government support for grassroots sustainable development.
Gwent Energy (Wales) was formed in 2009 to deliver environmental benefit and cost savings to its local community. It aims to help local consumers save money on their energy bills through a combination of renewable energy, efficiency, storage and electric vehicle charging interventions, whilst simultaneously generating a surplus to fund local community initiatives.
Author(s): Haf, S., Hirmer, S.A., Khalid, R., Roddis, P., Stabler, L., Warren, G., Foulds, C. ,Robison, R. and Rohse, M.
Published: 2020
Publisher: UKERC
Author(s): Barrett, J., Owen, A. and Taylor, P
Published: 2018
Publisher: UKERC
To recover the cost of energy policies which support the transition towards a low carbon energy system, levies are applied to household and business energy bills. This briefing note focuses on the levies applied to households.
Household energy policy costs
Energy policy costs are applied to household electricity and gas bills, equating to 132, or 13% of the average energy bill in 2016. This research highlights how low-income households are hit hardest by the current arrangements as the poorest households spend 10% of their income on heat and power in their homes, whereas the richest households only spend 3%, so any increase in prices hits the poor disproportionately.
Energy service demands in the UK
Household electricity and gas use represents only 12% of total final UK energy use. Total energy use includes all the energy used to provide househ
Author(s): Bradshaw, M.
Published: 2018
Publisher: Warwick Business School and UKERC
Natural gas plays a critical role in the UK’s energy system, providing twice as much energy as electricity, thus the secure and affordable supply of natural gas is an essential element of UK energy security and a key objective of Government policy. The starting proposition for this report is that Brexit is coming at a time when there are already major challenges to the UK’s future gas security.
This report deploys two aspects of previous UKERC research on UK gas security: first, a supply chain approach to assessing UK gas security; and second, a whole systems approach that places current and future gas demand within the context of the decarbonisation of the UK’s energy system. This is because there are key uncertainties in the wider system that have important implications for future gas demand. It is in this context that the Brexit decision has created additional uncertainty at a time when the UK energy sector needs to make critical investment decisions. In the current situation we can conceive of a ‘Brexit Interregnum’ whereby important decisions and policies are delayed because of the demands of the Brexit negotiations.
This report has three objectives:
Author(s): Sorrell, S., Speirs, J., Bentley, R., Brandt, A. and Miller, R..
Published: 2009
Publisher: UKERC
The report also focuses on the broadly ‘physical’ factors that may restrict the rate at which conventional oil can be produced, including the production profile of individual fields and the distribution of resources between different sizes of field. While these are invariably mediated by economic, technical and political factors, the extent to which increased investment can overcome these physical constraints is contested. Global oil supply is also influenced by a much wider range of economic, political and geopolitical factors (e.g. resource nationalism) and several of these may pose a significant challenge to energy security, even in the absence of ‘below-ground’ constraints. What is disputed, however, is whether physical depletion is also likely to constrain global production in the near-term, even if economic and political conditions prove more favourable. In practice, these ‘above ground’ and ‘below ground’ risks are interdependent and difficult to separate. Nevertheless, this report focuses primarily on the latter since they are the focus of the peak oil debate.
The report does not investigate the potential consequences of supply shortages or the feasibility of different approaches to mitigating such shortages, although both are priorities for future research.
Author(s): Cooper, T., James, R. and Gardner, S.
Published: 2012
Publisher: UKERC
The meeting brought together around 100 energy professionals from academia, business, the public sector, and nongovernmental organisations to discuss governance challenges and solutions for achieving a sustainable, secure, and affordable British energy system. The organisers approached this from a wide range of expertise including policy, law, regulation, energy provision, energy efficiency and behavioural change. The day began with a plenary in which four speakers introduced the topic. This was followed by breakout sessions to cover six themes:
During a closing plenary five speakers reflected on the key messages fromthe meeting.
Author(s): Stabler, L. and Foulds, C.
Published: 2020
Publisher: UKERC
At present, Governments commitment stands in sharp contrast with its inaction on heat decarbonisation to date. Under pressure to progress this agenda, Government has charged the Clean Heat Directorate with the task of outlining the process for determining the UK’s long-term heat policy framework, to be published in the Roadmap for policy on heat decarbonisation in the summer of 2020 (BEIS, 2017). This report, resulting from one of six EPSRC-funded secondments, is designed to support early thinking on the roadmap by answering the research question: How can Transitions research informs the roadmap for governing the UKs heating transition?
Delivered as part of the Energy-PIECES project, this report was developed during a secondment with BEIS.
Author(s): Greenacre, P., Gross, R. and Heptonstall, P.
Published: 2010
Publisher: UKERC
This report was produced by the UK Energy Research Centre’s (UKERC) Technology and Policy Assessment (TPA) function.
The primary objective of the TPA, reflected in this report, is to provide a thorough review of the current state of knowledge. New research, such as modelling or primary data gathering may be carried out when essential. It also aims to explain its findings in a way that is accessible to non-technical readers and is useful to policymakers.
Author(s): Hanna, R., Heptonstall, P. and Gross, R.
Published: 2022
Publisher: UKERC
Author(s): Barnes, J.
Published: 2023
Publisher: CREDS
Author(s): DNV GL
Published: 2014
Publisher: ETI
Author(s): ETI
Published: 2015
Publisher: ETI
Author(s): Bradshaw. M. and Watson. J.
Published: 2013
Publisher: UKERC
This response is largely based on research carried out within the UKERC project: The Geopolitical Economy of Global Gas Security and Governance: Implications for the UK. It also draws on UKERC’s energy system modeling research which has explored the changes that are necessary to meet the UK’s climate change targets.
Author(s): Cox, E., Bell, K. and Gross, R.
Published: 2021
Publisher: UKERC
Author(s): Haf, S. and Robison, R.
Published: 2020
Publisher: UKERC
Local Authorities role in the energy transition and working with their citizens in doing so, has been recognised as crucial to paving transition paths. Material collated within this report is intended to better inform Energy Cities and its partners, Local Authorities and Municipalities, civil society groups and others interested in how citizens can be supported and encouraged to participate in energy system developments as a part of the energy transition. The findings in this report are therefore intended to directly help Local Authorities across Europe in implementing more participative approaches to their governance practices in energy systems.
Delivered as part of the Energy-PIECES project, this report was developed during a secondment with Energy Cities.
Author(s): Holland, R., Ketsopoulou, I., Beaumont, N., Austen, M., Hooper.,T., Gross, R., Heptonstall, P., Watson, J. and Taylor., G.
Published: 2016
Publisher: UKERC
Author(s): Crawley, J., Ogunrin, S., Taneja, S., Vorushlyo, I. and Wang, X.
Published: 2020
Publisher: UKERC
Author(s): Darkin, B. with Neuhoff, K, Krey, M. and Gassan Zade, O
Published: 2006
Publisher: UKERC
UKERC hosted an international workshop in Oxford on 30-31 March to discuss the implementation of the Kyoto Protocol. The objective of the workshop was to determine whether and how Kyoto countries intend to deliver their Kyoto targets.
40 participants from Government, business, academia, think-tanks and nongovernmental organisations attended the workshop from 16 countries including several European Member States, Russia, Japan, Canada and Ukraine.
Author(s): Novikova, A., Keay-Bright, S. and Palmer, J.
Published: 2006
Publisher: UKERC
The workshop aimed to explore how the flexible mechanisms of the Kyoto Protocol could better capture the large energy efficiency potential in the CEE region. While implementation of the mechanisms in the region is desired, in practice it is likely to be a challenging task. The workshop has made it possible for two interested groups to meet and learn from each other: one group being participants from the CEE region seeking knowledge transfer and capacity building, and the other group being carbon trading specialists.
Author(s): Foxon, T.J., Kohler, J. and Neuhoff, K.
Published: 2006
Publisher: UKERC
The two workshops aim to:
The full presentations are available on the UKERC Meeting Place website. This report provides a summary of the presentations and discussions at the first workshop.
Author(s): Britton, J. and Webb, J.
Published: 2022
Publisher: UKERC
Author(s): Gross, R., Heptonstall, P. and Blyth, W.
Published: 2007
Publisher: UKERC
This report provides an analysis of the link between investment risks in electricity generation and policy design. The issues it discusses are relevant to a wide range of policy developments in the UK and elsewhere. These include banding the Renewables Obligation, bringing forward the development of power stations with carbon capture, financial support for nuclear power and the future of emissions trading.
Author(s): Hamilton, K.
Published: 2007
Publisher: UKERC
This working paper sets out to provide a short introduction to risk and return in making financing and investment decisions in the energy sector, focusing on renewable energy. It will specifically draw on the outcomes of consultation roundtables with financiers on renewable energy policy to illustrate what financiers need from policy to reduce risk and increase returns; what types of issues arise in different policy frameworks; and how policy can affect the attractiveness of different investments. The review of the UK’s Renewables Obligation policy provides a useful focal point for illustrating the latter.
Author(s): Cox, E., Bell, K.. and Brush, S.
Published: 2022
Publisher: UKERC
Author(s): Stevenson, L. and Royston, S.
Published: 2024
Publisher: UKERC
The brief discusses the contextual nuances of staff travel choices and the potential of policy interventions to encourage sustainable travel modes. Through a detailed review of NHS parking policies and broader academic literature on transport practices. It underscores the need to develop comprehensive trave
Author(s): Pidgeon, N., Gross, R., Bell, K., Bradshaw, M., Chaudry, M., Hanna, R., Qadrdan, M., Lockwood, M., Webb, J. and Wu, J.
Published: 2023
Publisher: UKERC
It was submitted to in response to the Welsh Government call for evidence to inform the development of Wales decarbonisation pathway to Net Zero, whilst also providing an initial step towards potentially developing a Just Transition Framework for Wales.
Author(s): Snell, C. and Bevan, M.
Published: 2018
Publisher: UKERC
Despite disabled people and low-income families with children being defined in policy as vulnerable to fuel poverty, there is very little evidence about how the needs of these groups are recognised or incorporated into policy decisions. There is alsono clear evidence on how energy efficiency policies actually affect these groups, and whether policy outcomes are consistent across the UK.
This policy briefingauthored by University of Yorks Department of Social Policy and Social Work (SPSW) and ACE Research, explores some of the key gaps in knowledge regarding justice in energy efficiency policy in the UK. The focus was on the impact of energy efficiency policies on disabled people, those with long-term illnesses and low-income households with children.
The delivery of energy efciency policy is variable and patchy, with vulnerable groups ingreatest need not always eligible for support, or receiving support which fails to reflect their additional needs. To improve access for vulnerable groups and to meet their needs more effectively, the authors recommenda greater recognition of the needs of vulnerable groups, more consistent approaches across the UK and better cooperation with non-energy sectors.
The researchidentifies five key barriers to accessing vital fuel poverty support mechanisms and suggests ways in which access and outcomes can be improved for all.
Author(s): Coleman, J.
Published: 2016
Publisher: ETI
Author(s): Anable, J., Brown, L., Docherty, I. and Marsden, G.
Published: 2022
Publisher: CREDS
Author(s): Rowe, R., Whitaker, J., Chapman, J., Howard, D. and Taylor, G.
Published: 2008
Publisher: UKERC
The study has used a systematic selection and analysis procedure to assess each LCA, collating data on the energy and GHG balances of liquid transport fuels and biomass for heat and power. This consistent approach will produce a dataset which can be used to uniquely compare the energy and GHG balances of these two uses of biomass. The representation of collated LCAs as straightforward visual summaries highlights variations within methodology, system boundaries and reporting.
Although this study is ongoing, several issues relating to the lack of transparency of LCA reporting have already become apparent. Common obstacles to reviewing this subject have been in successfully identifying system boundaries, co-product allocation methods and conversion efficiencies used in the LCAs being analysed. Therefore, a set of recommendations for LCA reporting are listed at the end of this report.
Author(s): Tingey, M., Webb, J. and Hawkey, D.
Published: 2017
Publisher: ETI
Author(s): Tingey, M., Webb, J., and Hawkey, D.
Published: 2017
Publisher: UK Energy Research Centre, the Energy Technologies Institute and the University of Edinburgh
Author(s): Hawkey, D., Tingey, M. and Webb, J.
Published: 2014
Publisher: ETI
Working with theEnergy Technologies Institute, Mags Tingey, Dave Hawkey and Jan Webb completed a pilot study exploring local engagement with energy systems. The work, an extension of theHeat and the City project, examined levels of local engagement across all 434 of the UK's local authority areas, and drew together a wide array of datasets with original collation of data.
Findings show that almost one third (30%) of the UKs 434 local authorities are actively planning, and investing in, energy productivity and provision. Most of this activity is on a limited scale with only 9% of UK authorities showing evidence of significant numbers of energy project investments. We characterised this 9% as 'Energy Leaders' and found they displayedmultiple routes into engagement, including economic regeneration, housing upgrades and affordable warmth, energy productivity, avoided costs of alternatives and environmental protection.Particular regions of the show considerably higher levels of local authority engagement, notably London, Scotland, and Yorkshire and Humber, and energy leaders tend to be metropolitan and larger authorities.
Preliminary exploration of the relationship between local authority engagement and levels of low carbon technology deployment (not restricted to local authorities own deployment) shows strong association with non-industrial Combined Heat and Power (CHP). Relationships between engagement and small (under 10MW) renewable electricity generation appears marginally significant. Levelling up deployment of non-industrial CHP across all areas to the levels of the most engagedauthorities would imply significant acceleration in deployment rates. The limited pilot research modelling suggests that the impact of this is small (under 10%) in terms of the UK energy production.
This work will continue under theLocal energy infrastructure operation & governance projectwith support from the Energy Technologies Institute. This work will use qualitative data gathering to explore some of the quantitative relations our pilot work uncovered, in order to build a better picture of the factors supporting and constraining local engagement with energy. We will also engage with UK energy system modelling to help form a clearer picture of the contribution and impact local energy could realistically have in future.
Author(s): Prime, K.
Published: 2024
Publisher: UKERC
The brief highlights innovative practices in prevention, repair, and recycling that can transform waste management systems, while acknowledging their interconnected complexities across practices. It underscores the need for local authorities to take a whole-system and cross-sectoral approach, empowering them with resources and policy fr
Author(s): Blyth, W., Gross, R., Speirs, J., Sorrell, S., Nicholls, J., Dorgan, A. and Hughes, N.
Published: 2014
Publisher: UKERC
Author(s): Ekins. P., Keppo. I., Skea. J., Strachan. N., Usher. W. and Anandarajah. G.
Published: 2013
Publisher: UKERC
This briefing draws out the key messages from the UKERC report The UK Energy System in 2050: comparing low-carbon resilient scenarios, – which describes and compares a series of model runs, implemented through the UK MARKAL modelling system, which was developed through UKERC with funding from the Research Councils’ Energy Programme. This has revealed some consistent patterns showing how the UK energy system might develop in future, which are discussed in detail in the full report.
Author(s): Skea, J, and Ekins. P
Published: 2009
Publisher: UKERC
This report takes a whole systems approach to the development of the UK energy system over the next 40 years.
Achieving a resilient low-carbon energy system is technically and economically feasible at an affordable cost.
There are multiple potential pathways to a low-carbon economy. A key trade-off across the energy system is the speed of reduction in energy demand versus decarbonisation of energy supply. There is also a number of more specific trade-offs and uncertainties, such as the degree to which biomass, as opposed to electricity and perhaps hydrogen, is used in transport and other sectors.
Deploying new and improved technologies on the supply side will require substantially increased commitment to RD&D, the strengthening of financial incentives and the dismantling of regulatory and market barriers. A major increase in efforts to acceleratethedevelopment of
Author(s): Pallett, H., Chilvers, J. and Hargreaves, T.
Published: 2017
Publisher: UKERC
Author(s): Sorrell, S.
Published: 2010
Publisher: SPRU, University of Sussex
Author(s): Speirs, J., Gross, R., Candelise, C. and Gross, B.
Published: 2013
Publisher: UKERC
The Paper considers first demand for indium and tellurium from the PV industry, now and in future. Whilst a range of scenarios exist for the role of PV in the global energy mix there is considerable agreement that the share of PV per se and thin film devices in particular is expected to expand considerably in the light of carbon abatement goals.
The paper then considers the supply of indium and tellurium. It provides a detailed review of the processes used to extract and refine them, and discusses the issues associated with producing these secondary metals which are extracted as trace elements during the production of primary metals such as zinc and copper. The Paper finds that there are considerable complexities associated with reported reserves and an absence of meaningful data on resources. Again, existing estimates of availability for the PV market are reviewed. This alsoreveals considerable variation within the literature and the use of a wide a range of assumptions upon which to base resource availability.
The paper concludes that there is no immediate cause for concern about availability of either indium or tellurium. PV occupies a small fraction of current markets and there is evidence of considerable potential to increase the extraction of both metals because a sizeable proportion of the material potentially available from primary metal extraction is not currently utilised. Moreover, there is potential to increase recycling of products containing indium or tellurium, for example from flat screens. However, the scale of the roll out of PV ~ vi ~ envisaged in some scenarios could imply a large expansion in the demand for indium and tellurium. There is no reason to believe that this is not feasible, however adequate data on reserves and resources do not exist. Resource estimates are not available and simplistic assumptions such as using current production or crustal abundance to estimate potential supply cannot provide any meaningful insight into future production. A scenario approach that links production to primary metals is appropriate. We conclude that considerable further research is needed to characterise indium and tellurium resources and the economic feasibility of expanding production.
Author(s): Speirs, J., Houari, Y., Contestabile, M., Gross, R. and Gross, B.
Published: 2013
Publisher: UKERC
The paper examines demand for lithium and neodymium from the EV industry. Lithium is used in Li-Ion EV batteries and neodymium is used in permanent magnets in electric motors and wind turbine generators. Global demand scenarios for EVs vary widely, though all anticipate a considerable growth in the EV market over the coming decades, driven largely by decarbonisation goals.
The paper then examines wind turbines, another low carbon use of neodymium. Again global demand for wind turbines and estimates of future material intensity are key to understanding future demand. It is also important to estimate the number of turbines using permanent magnet designs, since generators without permanent magnets are in common use. Decarbonisation goals are predicted to drive demand for wind turbines in the future, with several studies agreeing that future manufacturing of turbines will increase significantly. Based on this analysis, demand for neodymium from wind turbines could be between 600 and 6,000 tonnes per year by 2050.
Author(s): Speirs, J., Houari, Y. and Gross, R.
Published: 2013
Publisher: UKERC
Policy makers and industry are increasingly concerned over the availability of certain materials key to the manufacture of low carbon technologies. The literature addressing this topic includes reports termed criticality assessment that aim to quantify the relative criticality of a range of materials. In this study we examine the methodologies underpinning these criticality assessments, and attempt to normalise and compare their results. This process identified a list of 10 metals or metal groups for which average normalised scores are presented, along with maximum and minimum scores to indicate the range of uncertainty. We find that criticality assessment methodologies diverge significantly, making comparison difficult. This leads to apparently wide uncertainty in results. We also find that in order to achieve comparability within studies, authors typically rely on simple metrics for which data is available for all metals considered. This leads to some compromises which affect results. Finally we suggest that, given these uncertainties and methodological difficulties, criticality assessments are best used to highlight materials or technologies of particular interest, which should then be further examined in isolation, to improve insight and accuracy.
Author(s): Speirs, J., Gross, R., Contestabile, M., Candelise, C., Houari, Y. and Gross, B.
Published: 2014
Publisher: UKERC
There is increasing concern that future supply of some lesser known critical metals will not be sufficient to meet rising demand in the low-carbon technology sector. A rising global population, significant economic growth in the developing world, and increasing technological sophistication have all contributed to a surge in demand for a broad range of metal resources. In the future, this trend is expected to continue as the growth in low-carbon technologies compounds these other drivers of demand. This report examines the issues surrounding future supply and demand for critical metals - including Cobalt, Gallium, Germanium, Indium, Lithium, Platinum, Selenium, Silver, Tellurium, and Rare earth Metals.
Author(s): Sharick, A. and Webb, J.
Published: 2016
Publisher: UKERC
UKERC co-hosted a meeting last month with DECC and ETI to seek input and feedback on plans for the 300 million in heat network capital expenditures announced in the government's Spending Review.Amber Sharick, UKERC Business Engagement Manager, andJan Webb, UKERC Researcher & Professor of Sociology of Organisations, University of Edinburgh, report on the discussions.
Author(s): RCUK, NERC, ESRC and UKERC
Published: 2010
Publisher: UKERC
The west of Shetland region is physically a very different environment to the Gulf of Mexico, so environmental impact of a deep water spill in this area would be different, in many aspects.
A regulatory system could be enacted to compel companies to develop a shareddeep-water rapid response system to cap wells, and the levels of insurance cover companies are obliged to have could be increased.
The UKs regulatory system is robust but could be improved, though there is a limit to which increased regulation can be implemented and effective.
Scenarios which may reduce the need to exploit deepwater reserves during the transition to a low carbon economy are discussed. However, given our current reliance on oil and gas, such exploitation may be necessary.
Under free market regulations the contribution of deepwater reserves to security of supply may be limited, though there may be some economic benefits of exploitation
Author(s): Gross, R.
Published: 2006
Publisher: UKERC
The reason for producing this note is that two distinct strands of thought can be found in the literature on how to conceptualise the costs associated with any additional capacity required to maintain reliability when intermittent generators are added to an electricity network. The first does not explicitly define a system reliability cost rather it assesses the overall change in system costs that arises from additional capacity (Dale et al 2003). This approach can be used to derive system reliability cost if combined with an assessment of the impact on load factors of incumbent stations when new generators are added (see footnote 2). The second includes an explicit system reliability cost. This approach requires that we make an assumption about the nature of the plant that provides back up(Ilex and Strbac 2002). Both approaches should arrive at the same change in total system costs.
Author(s): Otoadese, J.
Published: 2008
Publisher: UKERC
To address the aim, each chapter author presented a 10-minute summary of his chapter. This was followed by a five-minute critique by an invited discussant. Comments were invited from the floor for a further 15-minute period. Professor Gary May provided an overview of research in this area at the end of the workshop. The workshop was opened by an invited chair, Professor A.P. Sakis Meliopoulos of the Georgia Institute of Technology. Professor Meliopoulos offered final concluding remarks.
Author(s): Hardt, L., Brockway, P., Taylor, P., Barrett, J., Gross, R. and Heptonstall, P.
Published: 2019
Publisher: UKERC
Under the UK Climate Change Act 2008, the government is legally bound to reduce greenhouse gas (GHG) emissions by 80% by 2050 relative to 1990 levels.
Historically, the focus of energy policy in the UK has been on supply-side policies, such as decarbonisation of electricity generation through greater use of low carbon technologies like wind and solar. Increasingly, however, demand-side energy policies are being recognised as having important contributions to make to achieving emission reduction targets, through reducing energy demand or by making energy demand more flexible and compatible with variable renewable energy sources. Such demand-side policies can seek to promote a wide range of technologies and behaviours, for example improved buildinginsulation, reduction in the use of energy intensive materials and increases in teleworking to reduce commuting.
To fully realise the potential of demand-side energy policies, it is important that they can be adequately represented in quantitative energy models, because such models play an important role in informing UK energy policy. However, we do not currently have a good understanding of how well the different energy models that inform UK government energy policy represent energy demand and demand-side energy policies.
Therefore we have undertaken a Rapid Evidence Assessment (a constrained form of systematic review) to examine the energy models that have informed energy policy documents published by the UK government between 2007 and 2017. The overarching question this review seeks to address is:
How suitableare the energy models used toinform UK government energy policy for exploring the full range of contributions that demand-side energy policies can make to climate change mitigation?
Our Rapid Evidence Assessment reveals that the core strength of current energy modelling is the detailed representation of technologies, with many models featuring information on hundreds of potential technological options for increasing energy efficiency. Although uncertainties exist around these technological options, these models allow us to gain a coherent and realistic understanding of how different combinations of technologies could satisfy our future energy service demands under different low-carbon scenarios.
However, the modelling landscape reveals two key limitations with regard to the representationof non-technological drivers of energy demand:
Author(s): Rafa, N. and Khalid, R.
Published: 2024
Publisher: UKERC
Despite these benefits, barriers such as regulatory gaps, cultural inertia within the construction sector, and lack of consumer awareness hinder MMCs widespread adoption. In light of current challenges, the study underscores the imp
Author(s): Beaumont, N., Bell, K., Flower, J., Gross, R., Hanna, R., Qadrdan, M., Rhodes, A., Speirs, J., Taylor, P., Webb, J. and Wu. J.
Published: 2022
Publisher: UKERC
Author(s): Ruffenach, A.
Published: 2018
Publisher: ETI
Author(s): Sanderson, M. and Hull, A.
Published: 2018
Publisher: ETI
Author(s): Mott MacDonald
Published: 2010
Publisher: ETI
Author(s): PPA Energy
Published: 2014
Publisher: ETI
Author(s): Coleman, J.
Published: 2016
Publisher: ETI
Author(s): Britton, J., Poulter, H. and Webb, J.
Published: 2023
Publisher: UKERC
Author(s): Coleman, J.
Published: 2016
Publisher: ETI
Author(s): Anandarajah, G., Strachan, N., Ekins, P., Kannan, R. and Hughes, N.
Published: 2009
Publisher: UKERC
This report is the first in the UKERC Energy 2050 project series. It focuses on a range of low carbon scenarios underpinned by energy systems analysis using the newly developed and updated UK MARKAL elastic demand (MED) model. Such modelling is designed to develop insights on a range of scenarios of future energy system evolution and the resultant technology pathways, sectoral trade-offs and economic implications. Long-term energy scenario-modelling analysis is characterised by deep uncertainty over a range of drivers including resources, technology development, behavioural change and policy mechanisms. Therefore, subsequent UKERC Energy 2050 reports focus on a broad scope of sensitivity analysis to investigate alternative scenarios of energy system evolution. In particularly, these alternative scenarios investigate different drivers of the UK’s energy supply and demand, and combine the twin goals of decarbonisation and energy system resilience. Future analysis includes the use of complementary macro-econometric and detailed sectoral energy models.
Author(s): Anandarajah, G., Strachan, N., Ekins, P., Kannan, R. and Hughes, N.
Published: 2008
Publisher: UKERC
This report is the first in the UKERC Energy 2050 project series. It focuses on a range of low carbon scenarios underpinned by energy systems analysis using the newly developed and updated UK MARKAL elastic demand (MED) model. Such modelling is designed to develop insights on a range of scenarios of future energy system evolution and the resultant technology pathways, sectoral trade-offs and economic implications. Long-term energy scenario-modelling analysis is characterised by deep uncertainty over a range of drivers including resources, technology development, and behavioural change and policy mechanisms. Therefore, subsequent UKERC Energy 2050 reports focus on a broad scope of sensitivity analysis to investigate alternative scenarios of energy system evolution. In particularly, these alternative scenarios investigate different drivers of the UKs energy supply and demand, and combine the twin goals of decarbonisation and energy system resilience. Future analysis includes the use of complementary macro-econometric and detailed sectoral energy models.
Author(s): Demski, C., Pidgeon, N., Evensen, D. and Becker, S.
Published: 2019
Publisher: UKERC
Under the UK Climate Change Act 2008, the government has committed to reduce greenhouse gas emissions by 80% by 2050 relative to 1990 levels (Climate Change Act, 2008). This will require a large shift in the UK’s energy system, ranging from energy production, across transmission to consumption.
The public are implicated in the transition process as energy users, increasingly also as energy producers and as active members of society who might support or oppose energy projects and policies. Previous research (Demski et al., 2015; Parkhill et al., 2013) has shown that there is widespread public support for transitioning to a low-carbon, affordable and reliable energy system – however, this change is associated with costs and it remains to be seen how these costs will be covered.
This research explores the views of the British public on how the energy transition should be financed. Drawing on a survey of 3,150 respondents and focus groups in 4 locations across Great Britain, it investigates what responsibility members of the public assign to government, energy companies and the general public for financing energy system change.
The results highlight widespread support for an energy system that ensures affordability, reliability and low carbon energy sources. Energy companies and the government were assigned primary responsibility for contributing financially to energy transition, as they were seen to have the structural power and financial means to implement necessary changes. Respondents also indicated that the general public ought to contribute as well, although the public was perceived to be paying over the odds already (through bills to the energy companies and levies to the government). Nonetheless, research participants expressed willingness to accept between 9-13% of their energy bills going towards environmental and social levies.
Willingness to contribute financially towards the energy transition was also found to be dependent on the perception that energy companies and government are contributing financially and showing real commitment to energy system change. It was also notable that this condition was not currently thought to be met; distrust in this regard was particularly evident in focus group discussions.
Distrust in companies: People believe that the majority of energy companies are driven primarily by profit motives leading to inadequate commitments with regards to energy transition goals such as investing in low-carbon energy and ensuring energy affordability.
Distrust in government: The government, and politicians in particular, are seen as too closely connected to the energy industry, leading to inadequate and ineffective regulation of energy companies and their opaque practices.
Examining what underlies people’s distrust, it is evident that the public has a number of justice and fairness concerns that need to be addressed. In particular, beliefs concerning distributive justice (i.e. how costs are distributed across society) and procedural justice (i.e. respectful treatment, transparent practices and decision-making) are important for public acceptance of responsibility and costs.
Addressing the issues underlying the trust deficit will be challenging, but this is nonetheless important if we are to ensure that there is to be broad societal consent and engagement with the low-carbon energy transition. To begin this process, the briefing includes the following recommendations:
Author(s): Parag, Y. and Strickland, D.
Published: 2009
Publisher: UKERC
This working paper explores what people may need to know, learn and have if aPersonal Carbon Allowances (PCA) scheme was implemented, and suggests ideas forpolicies, programmes and initiatives that could support them. A PCA scheme impliesthat individuals would have a personal budget of carbon credits, which they wouldneed to manage, to some extent, in order to stay within its limits, and in the bestcase scenario earn some money by selling not-needed carbon credits. Thus, thispaper looks at the budgeting process from the carbon account holders view pointand applies insights from how people budget under monetary and non-monetaryconstrains to the study of PCA. It also highlights related policy design issues.
The paper is composed of two sections. The first sets PCA in the policy contextalongside other existing and proposed emissions reduction policies. Next it explainsthe mechanisms through which PCA supposes to change energy demand behaviourand then describes the current discourse surrounding PCA in the UK. The secondsection lays out the rational for examining PCA through the lense of budgeting andpoints at questions arising from the concept of living within a carbon budget. It then discusses in detail the prerequisites for carbon budgeting, which include: setting the budgetary limits; knowing personalised carbon income and expenditure; having low carbon alternatives; having the opportunity to perform low carbon choices; receiving advice and support; and learning how to trade. This is followed by a short concluding section.
Author(s): Bottrill, C.
Published: 2006
Publisher: UKERC
Personal carbon trading (PCT) is a proposed quantity-based policy instrument for reducing the carbon emissions emitted by individuals. The aim of the scheme would be to deliver guaranteed levels of carbon savings in successive years in an equitable way. A PCT scheme would set a total cap on all carbon emissions generated from the fossil fuel energy used by individuals within the home and for personal transport, including those emissions from air travel. In the UK these personal emissions account for approximately half of all carbon emissions. A PCT scheme would be part of an economy-wide emissions trading scheme.
Author(s): Keay-Bright, S., Fawcett, T. and Howell, R.
Published: 2008
Publisher: UKERC
Author(s): Marvin, S., Palmer, J. and Plater, D.
Published: 2006
Publisher: UKERC
This report presents the key outputs from the workshop on Place and Energy: Does scale matter? which took place on 21st August 2006 at Imperial College, London and was hosted and sponsored by the UK Energy Research Centre Meeting Place.
The aim of the workshop was to identify the research and policy issues in developing a multi-level energy policy that takes place and the relationships between scales seriously, which would be of value to both policy and practice
Author(s): Britton, J. and Webb, J.
Published: 2024
Publisher: UKERC
Author(s): Snell, C., Bevan, M., Gillard, R., Wade, J. and Greer, K.
Published: 2018
Publisher: UKERC
The Policy Pathways to Justice in Energy Efficiency working paper addresses two key gaps in knowledge regarding justice in energy efficiency policy in the UK. Despite disabled people and low-income families with children being defined in policy as vulnerable to fuel poverty, there is very little evidence about how the needs of these groups are recognised or incorporated into policy decisions. There is alsono clear evidence on how energy efficiency policies actually affect these groups, and whether policy outcomes are consistent across the UK.
The research was undertaken by researchers at the University of York andACE Researchand was supported byDisability Rights UKandThe Childrens Society. One hundred and twenty-five households and practitioners were interviewed as part of the research. In addition to this working paper, acondensed policy guide is also available, as well as separate guides for practitioners who focus on theneeds of disabled people, andfamilies on low incomes.
The research team found that disabled people and low-income families with children often had higher energy demands within the home compared to other households. These increased demands are often associated with keeping warm, additional laundry needs, and in some cases using energy intensive equipment such as dehumidifiers and nebulisers. These circumstances lead to both increased household energy costs and higher risks associated with disconnection and a drop in household temperature.
Despite these needs, and the intention of policy to support households in this position, interviewees described accessing information and advice about energy and energy efficiency as a minefield, high levels of mistrust in the energy sector, and finding it difficult to know where to go and which sources to trust.
The report reveals the delivery of energy efciency policy is variable and patchy, with vulnerable groups in greatest need not always eligible for support or receiving support which fails to reflect their additional needs. To improve access for vulnerable groups and to meet their needs more effectively, the report recommends there be a greater recognition of the needs of vulnerable groups, more consistent approaches across the UK and better cooperation with non-energy sectors.
The report identifies five key barriers to accessing vital fuel poverty support mechanisms and suggests ways in which access and outcomes can be improved for all.
Author(s): Hirmer, S.A. and Robison, R.
Published: 2020
Publisher: UKERC
Energy is a crucial element for development in almost every aspect of community life such as education, health, food, and security, and it can contribute to farming productivity, income generation, and the creation of networks that enable youth to work from their villages. Despite this, around 1 billion people globally do not have access to sustainable energy sources, and 80% of those people live in rural areas across 20 countries in Asia and sub-Saharan Africa. To decrease this energy access gap, and to improve rural livelihoods and increase economic opportunities in rural areas, Productive Uses of Energy (PUE) offer an untapped opportunity: examples of PUE include irrigation and post-harvest processing.
Despite the benefits of PUE, they are often not considered in the planning off-grid rural electrification developments. This may be partially attributed to a lack of capital; riskyframework conditions; and a lack of clear policy guidelines available on the subject. The latter of which was the focus of this research project.
Delivered as part of the Energy-PIECES project, this report was developed during a secondment with Practical Action.
Author(s): Jenkinson, K., Eyre, N and Barrett, J.
Published: 2021
Publisher: CREDS
Author(s): Atkins
Published: 2015
Publisher: ETI
Author(s): ETI
Published: 2014
Publisher: ETI
Author(s): Anderson, D
Published: 2006
Publisher: UKERC
The following analysis revisits the relationships between the reserve requirements, the capacity margins needed to maintain the reliability of supplies, the costs of intermittency, the capacity credit for intermittent generation, and several other quantities. It is not put forward as a substitute for full-blown modelling studies, but does provide a reminder of principles and an independent means of checking results. It rests on a few key parameters, principally the means, standard deviations and ranges of the frequency distributions of the various quantities. Whilst this is a simplification, it helps to make the underlying relationships more transparent and enables the analyst to explore the effects of changes in assumptions. It begins with a basic case and then relaxes the assumptions.
There are three questions which recur throughout the paper:
The paper does not answer questions as to what the optimum reserve margin should be or how it should be determined. There is a long debate on the role of markets and regulation for determining reserve margins which this paper does not get into. Suffice it to say that whatever policy position is taken: (a) in actuality there is at all times a reserve margin, which is the difference between available capacity and demand; (b) this quantity is of interest and needs to be monitored since when it declines the probability of losing load increases; (c) when for policy purposes estimates of the costs of introducing intermittent resources onto the system are being made it is necessary to compare like-with-like such that the costs of introducing them, including the costs of maintaining the reliability of supplies, can be compared with the costs of the alternatives.
Author(s): Cairns, S. and Newson, C.
Published: 2005
Publisher: UKERC
This paper argues that reducing the impacts of aviation should be treated as a priority by those interested in averting climate change, and that the scale of reduction needed can only be achieved through demand restraint i.e. discouraging people from flying. Economic policy potentially has a key role to play in this process. The UK Government has the power to introduce a number of economic measures to complement the EU Emissions Trading Scheme, and these measures probably offer the best hope of starting to restrain demand in the immediate future.
Author(s): Gross, R., Heptonstall, P., Greenacre, P., Candelise, C., Jones, F. and Castillo Castillo, A.
Published: 2013
Publisher: UKERC
This report considers the role and importance of electricity cost estimates and the methodologies employed to forecast future costs. It examines the conceptual and empirical basis for the expectation that costs will reduce over time, explains the main cost forecasting methodologies, and analyses their strengths, limitations and difficulties. It considers six case study technologies in order to derive both technology specific and generic conclusions about the tools and techniques used to project future electricity generation costs.
Author(s): Slade, R., Bauen, A. and Gross, R.
Published: 2010
Publisher: UKERC
Using biomass to provide energy services is one of the most versatile options for increasing the proportion of renewable energy in the existing system. This report reviews metrics used to compare alternative bio-energy pathways and identifies limitations inherent in the way that they are calculated and interpreted. It also looks at how companies and investors approach strategic decisions in the bio-energy area.
Author(s): Poortinga, W., Pidgeon, N.F., Capstick, S. and Aoyagi, M.
Published: 2014
Publisher: UKERC
This report describes the findings of a nationally representative British survey (n=961) conducted in March 2013. The main aim of the survey was to assess British attitudes to nuclear power and climate change two years after the Fukushima accident. The results are compared to a number of British surveys that were conducted at different stages before and after the Fukushima accident (2005, 2010, 2011, and 2012). This provides an overview of how public attitudes to nuclear and climate change have developed over the past decade and in particular after the Fukushima accident. In the longer term the data will be used for more detailed cross-national comparisons with Japan.
Author(s): Poortinga, W., Pidgeon, N.F., Capstick, S. and Aoyagi, M.
Published: 2013
Publisher: UKERC
The work by Poortinga and colleagues (2013) has shown that British and Japanese publics have responded very differently to the Fukushima accident. However, the surveys included in the analyses were not specifically designed to examine the impacts of the Fukushima accident and contained different sets of questions. Comparisons could therefore only be made on a small number of items.
This new survey builds upon the previous work conducted by the authors of the study (Poortinga et al., 2006; Spence et al., 2010; Aoyagi et al., 2011; Demski et al., 2013) and examines British attitudes to nuclear power and climate change two years after the Fukushima accident. The British survey was coordinated with a similar survey in Japan allowing a detailed cross-national comparison of the long-term impacts of the Fukushima accident on public attitudes to nuclear power and climate change. The Japanese survey was conducted in February 2013 (Aoyagi, 2013).
This report describes the main findings of the British survey conducted in March 2013. The results are contrasted with previous British surveys where possible (i.e. Poortinga et al., 2006; Spence et al., 2010; Demski et al., 2013). Technical details of the previous surveys are provided in Box A. In the longer term, the data will be used for more detailed statistical analyses and cross-national comparisons with Japan.
Author(s): Evans, H.
Published: 2016
Publisher: ETI
Author(s): ETI
Published: 2015
Publisher: ETI
Author(s): ETI
Published: 2015
Publisher: ETI
Author(s): ETI
Published: 2017
Publisher: ETI
Author(s): Reser, J. P., Pidgeon, N., Spence, A., Bradley, G. A., Glendon, I. and Ellul, M.
Published: 2011
Publisher: Griffith University, Climate Change Response Program, Queensland, Australia, and Understanding Risk Centre, Cardiff University, Wales
This final report presents and discusses national survey findings from a collaborative and cross-national research project undertaken by Griffith University (Australia) and Cardiff University (UK) examining public risk perceptions, understandings and responses to the threat and unfolding impacts of climate change in Australia and Great Britain. The Australian national survey was undertaken between 6 June and 6 July, 2010 and involved a representative and geographically and demographically stratified national sample of 3096 respondents. The British survey was undertaken between 6 January and 26 March, 2010 and involved a representative quota sample of 1822 respondents residing in England, Scotland and Wales. These articulated surveys were distinctive in their cross-national comparative collaboration, in their psychological and social science nature, focus, and design, in their indepthnature, and in their focus on underlying public understandings and psychological responses to climate change.
This report addresses common findings from these two linked surveys, and expands discussion of issues and findings from the Australian survey. A report detailing the UK survey findings is available separately (Spence, Venables, Pidgeon, Poortinga, & Demski,2010). As well as shared questions and objectives, each survey had additional and differing objectives, with the Australian survey also examining in more detail public risk perceptions, direct exposure and experience, and psychological responses and impacts to natural disasters. The British survey examined in more detail respondents perceptions of energy policies and futures for the United Kingdom. The Australian survey also differed in that it was specifically designed and planned to establish a data base and research platform for documenting and monitoring climate-related changes and impacts in the human landscape over time, including changes in risk perceptions and understandings, psychological responses, and changes in psychological adaptations and impacts.
Author(s): Chilvers, J., Pallett, H. and Hargreaves, T.
Published: 2017
Publisher: UKERC
This paper examines public engagement with energy in the UK.
Using mapping techniques, the paper investigates instances of engagement with energy between 2010-2015.
The paper concludes with a number of practical recommendations to assist the move towards a broader, whole systems approach to engaging society in low carbon transitions.
Read Jason Chilvers' blog about the project here.
Author(s): Philo, G.
Published: 2012
Publisher: UKERC
Author(s): Palmer, J., LaJoie, K. and Strachan, NS.
Published: 2006
Publisher: UKERC
The 2006 Annual Energy Modelling Conference (AEMC) of the UK Energy Research Centre (UKERC) was held in Oxford UK from 5-7 December 2006. The conference theme was Quantifying Scenarios of a Low Carbon Society. The conference structure consisted of an open symposium with UK energy policy stakeholders followed by a technical modelling workshop. A particular emphasis was on developing country participation. A key output of the workshop was to define comparative modelling runs which will be a direct research output to the UK-Japan research project Developing Visions for a LowCarbon Society (LCS) through Sustainable Development.
Open Symposium
Author(s): Lidstone, L.
Published: 2017
Publisher: ETI
Author(s): Chiu, L.F. and Lowe, R.
Published: 2020
Publisher: CREDS
Author(s): Skea, J. and Infield, D.
Published: 2007
Publisher: UKERC
The following submission is preceded by a tabled summary of the current state of energy research and development and deployment in the UK, technology by technology. This is used as the basis for commentary on the technology potential of:
UKERC offers its views on the research funding landscape. Recommendations are highlighted in bold.
Author(s): UKERC
Published: 2006
Publisher: UKERC
The seminar was split into two parts, with the morning concentrating on future applications for hydrogen (the demand side) and the future economics of hydrogen infrastructure development (supply side). On the applications front, there were presentations from Dr Paul Harborne of the Cass Business School and Professor Paul Ekins of the Policy Studies Institute.
Author(s): Allan, G., Gilmartin, M., McGregor, P. and Swales, K.
Published: 2012
Publisher: UKERC
The aim of this paper is to describe three multi-sectoral modelling techniques, and to show how these modelling approaches have been used to quantify the economic impact of renewable energy and energy efficiency developments.
The three techniques are Input-Output (IO), Computable General Equilibrium (CGE) and Macroeconometric studies. Each is firstly detailed in a separate section. In each section we describe the nature and operation of the technique, and identify different types and sub-types (where appropriate). We then consider the data requirements of these modelling approaches and finally discuss what might be considered the strengths and weaknesses of each approach. For each modelling approach we pay particular attention to the ways in which the employment effects are estimated, as employment is arguably the most tangible economic variable.
After sections on each of the three modelling techniques, we address some general questions about their applicability and validity of each approach for understanding the quantitative impacts of renewable energy and energy efficiency improvements.
Author(s): Bell, K., Dodds, P., Chaudry, M., Eyre, N. and Aylott, M.
Published: 2014
Publisher: UKERC
This Consultation Response to the House of Lords Science and Technology Committee Inquiry into the resilience of electricity infrastructure.In this response we discuss whether theUKs electricity system is resilient to peaks in consumer demand and sudden shocks, andhow the costs and benefits of investing in electricity resilience are assessed and decisions made.
Author(s): Skea, J.
Published: 2007
Publisher: UKERC
Author(s): Hardy. J.
Published: 2011
Publisher: UKERC
The UK Energy Research Centre welcomes this opportunity to provide input to the HMT Carbon Floor Price Consultation. We have focused only on the questions where we believe we may have something to offer. The observations have benefited from discussions at an “Independent Experts Workshop on Electricity Market Reform” convened jointly by UKERC and the Imperial Collage Centre for Energy Policy and Technology on 31 January 2011.
Author(s): Mitchell, C., Baker, P. and Gross, R.
Published: 2010
Publisher: UKERC
The UK Energy Research Centre welcomes this opportunity to provide input to the Ofgem consultation Project Discovery: Options for delivering secure and sustainable energy supplies. The UKERC response addresses a number of the questions posed in the consultation document. The response has been prepared by Catherine Mitchell and Phil Baker from the University of Exeter and Robert Gross from ICEPT at Imperial College. It makes a number of high level and specific points but does not seek to be exhaustive. We refer the reader also to UKERCs submission to Ofgems previous consultation over Project Discovery, in which we make a number of observations about the various scenarios considered by Ofgem. These provide some important context for the comments provided below.
Substantive points are made on a chapter by chapter basis below, with higher level issues pulled out as app
Author(s): Watson, J., Ekins, P., Gross, R., Froggatt, A., Barrett, J., Bell, K., Darby, S., Webb, J., Bradshaw, M., Anable, J., Brand, C., Pidgeon, N., Demski, C. and Evensen, D.,
Published: 2017
Publisher: UKERC
UKERCs 2017 Review of Energy Policy, appraises energy policy change over the last 12 months, and makes a series of recommendations to help meet the objectives of the governments Clean Growth Plan.
Our main recommendations are:
Author(s): Watson, J., Bradshaw, M., Froggat, A., Kuzemko, C., Webb, J., Beaumont, N., Armstrong, A., Agnolucci, P., Hastings, A., Holland, R., Day, B., Delafield, G., Eigenbrod, F., Taylor, G., Lovett, A., Shepard, A., Hooper, T., Wu, J., Lowes, R., Qadrdan, M., Anable, J., Brand, C., Mullen, C., Bell, K., Taylor, P. and Allen, S.
Published: 2019
Publisher: UKERC
Author(s): Gross, R., Bell, K., Brand, C., Wade, F., Hanna, R., Heptonstall, P., Kuzemko, C., Froggatt, A., Bradshaw, M., Lowes, R., Webb, J., Dodds, P., Chilvers, J. and Hargreaves, T.
Published: 2020
Publisher: UKERC
In this issue of UKERCs annual Review of Energy Policy, we discuss some of the effects of COVID-19 on the energy system and how the unprecedented events of 2020 might impact energy use and climate policy in the future.
Focusing on electricity demand, transport, green jobs and skills, Brexit, heat, and societal engagement, the Review reflects on the past year and looks forward, highlighting key priorities for the Government.
Key recommendations
Electricity
The scale of investment in the power system required over the coming decade is huge. A big challenge is market design. We need a market that can incentivise investment in low carbon power and networks at least cost whilst also providing incentives for flexibility. Output from wind and solar farms will sometimes exceed demand and other timesfallto low levels. The right mix of flexible resources must be established to deal with variable output from renewables, with the right market signals and interventions in place to do this at least cost.
Mobility
The end of the sale of fossil fuel cars and vans by 2030 must be greeted with enthusiasm. Yet if this is to play its part in a Paris-compliant pathway to zero emissions, it must be one of many policy changes to decarbonise UK transport. Earlier action is paramount, and we recommend a market transformation approach targeting the highest emitting vehicles now, not just from 2030. Phasing-in of the phase-out will save millions of tons of CO2 thus reducing the need for radical action later on. The forthcoming Transport Decarbonisation Plan has a lot to deliver.
Green jobs and skills
COVID-19 recoverypackages offer the potential to combine job creation with emissions reduction. A national housing retrofit programme would be a triple win, creating jobs, reducing carbon emissions and make our homes more comfortable and affordable to heat. However, UKERC research finds that there are significant skills gaps associated with energy efficient buildings and low carbon heat. UKERC calls for a national programme of retraining and reskilling that takes advantage of the COVID downturn to re-equip building service professions with the skills needed for net zero.
Brexit
As the UK leaves the EU on the 1st January it will lose many of the advantages of integration. With new regimes for carbon pricing, trading, and interconnection yet to be agreed, there will be a high degree of uncertainty in the near to medium term. Given upward pressure on energy costs,delays to policy, and this uncertainty surrounding new rules, the overall effects of Brexit are not positive for UK energy decarbonisation.
Heat
UKERC research calls for action on heat to deliver the net zero technologies that we know work - insulating buildings and rolling out proven options. We need to end delay or speculation about less-proven options. Analysis is consistent with recent advice from the CCC that heat policy should focus on electrification whilst exploring options for hydrogen. We need to break the pattern of ad hoc and disjointed policy measures for heat and buildings, and develop a coherent, long-term strategy. This would be best achieved as an integral part of local and regional energy plans, involving local governments as coordinating agents. The aspirations for heat cant be realised unless we also take actionon the skills gap.
Societal engagement with energy
Achieving net zero in 2050 will entail significant changes to the way we live, what we eat and how we heat our homes. The COVID-19 pandemic has shown that when faced with a threat, society can change rapidly. Engaging society with the net zero transition also needs to change, it needs to be to be more ambitious, diverse, joined-up and system-wide, and recognise the many different ways that citizens engage with these issues on an ongoing basis.
Author(s): Gross, R., Bradshaw, M., Bridge, G., Weszkalnys, G., Rattle, I., Taylor, P., Lowes, R., Qadrdan, M., Wu, J., Anable,J., Beaumont, N., Hastings, A., Holland, R., Lovett, A., Shepherd, A..
Published: 2021
Publisher: UKERC
With a focus on gas and the UK continental shelf, industrial decarbonisation, heat, mobility and the environment, we look at developments both at home and internationally and ask whether the UK is a leader in decarbonisation, and if the transition is being managed as well as it could be.
Author(s): Gross, R., Webb, J., Bradshaw, M., Bell, K., Taylor, P., Gailani, A., Rattle, I., Brand, C., Anable, J., Kuzemko, C. and Froggatt, A.
Published: 2022
Publisher: UKERC
Author(s): Taylor, P., Bays, J., Bradshaw, M., Webb, J., Britton, J., Bolton, R., Chaudry, M., Qadrdan, M., Wu, J., Anable, J., Brand, C., Rattle, I., Gailani, A., Bell K., Halliday, C., Shepherd, A., Watson, S., Lovett, A. and Hastings, A.
Published: 2023
Publisher: UKERC
Author(s): Watson, J., Ekins, P., Bradshaw, M., Wilson, G., Webb, J., Lowes, R., Bell, K., Demski, C., Snell, C., Bevan, M., Waddams, C., Anable, J. and Brand, C.
Published: 2018
Publisher: UKERC
As we reach the end of 2018, the scorecard for UK energy policy is mixed. Optimists can point to rapid emissions reductions, cost falls in renewables and the centrality of clean energy within the Industrial Strategy. Ten years after the Climate Change Act was passed, UK greenhouse gas emissions have fallen by 43% from the level in 1990. The UK is on the way to meeting the first three carbon budgets, and a transformation of the power sector is well underway.
However, if we turn our attention from the rear view mirror, the outlook is more pessimistic. As the Committee on Climate Change pointed out in June, there are an increasing number of policy gaps and uncertainties. If not addressed promptly, meeting future carbon budgets will be much more challenging. For some of these gaps, there is a particularly clear and immediate economic case for action.
The government needs to take urgent action to ensure that the UK continues to meet statutory emissions reduction targets, and goes further to achieve net zero emissions. This not only requires new policies to fill looming gaps in the portfolio, it also requires much greater emphasis on sharing the benefits and costs of the low carbon transition more equitably. Our main recommendations are:
Author(s): Watson, J., Ekins, P., Wright, L., Eyre, N., Bell, K., Darby, S., Bradshaw, M., Webb, J., Gross, R., Anable, J., Brand, C., Chilvers, J., and Pidgeon, N.
Published: 2016
Publisher: UKERC
This review takes stock of UK energy policy ahead of the Autumn Statement, Industrial Strategy and new Emissions Reduction Plan. Its main recommendations are:
Author(s): Blyth, W., Gross, R., Nash, S., Jansen, M., Rickman, J. and Bell, K.
Published: 2021
Publisher: UKERC
Author(s): Watson, J., Winskel, M., Bell, K., Hawker, G., Webb, J., Tingey, M., Dodds, P., Chilvers, J., Pallett, H., Pidgeon, N., Demski, C., Morton, C., Scott, K., Roelich, K., Sakai, M., Cotton, I., Sambrook, K., Giesekam, J. and Barrett, J.
Published: 2017
Publisher: UKERC
UKERC welcomes the Scottish Government's energy and climate policy ambition, and applaud the valuable lead it is taking on energy. This has the potential to bring economic and social advantages - for example, the development of low carbon industrial capability with export potential and jobs, and improved air quality with associated health benefits. However, it is also important to ensure that the scale and pace of the transition minimises the additional costs for consumers. This can be achieved by supporting technological innovaiton that further reduces the costs of low carbon technologies and by maximising investments in energy efficiency.
Author(s): Britton, J. and Webb. J.
Published: 2022
Publisher: UKERC
Author(s): Bell, K., Bridge, G., Britton, J., Cooper, S., Gailani, A., Gross, R., Hanna, R., Munoz, C.C., Poulter, H., Rattle, I., Sugar, K., Turner, K., Webb, J. and Whitmee, S.
Published: 2023
Publisher: UKERC
Author(s): Winskel, M., Watson, J., Gross, R., Dodds, P. and Bell, K.
Published: 2018
Publisher: UKERC
UKERC have submitted a reponse to the Scottish GovernmentFinance and Constitution Committee's call for evidence on the Financial Memorandum that accompanies the Climate Change Bill.
This bill was introduced in May 2018 andamends the Climate Change (Scotland) Act 2009 to make provision for setting targets for the reduction of greenhouse gases emissions and to make provision about advice, plans and reports in relation to those targets.
Author(s): Allan, G., Barkoumas, C., Ross, A. and Sinha, A.
Published: 2020
Publisher: UKERC
In this working paper, we look at the economic, energy, and emissions consequences for the UK of non-energy or invisible energy policies (Cox et al, 2019). These are policies which, while not explicitly energy-focused, impact on energy use and emissions. We examine this from a sectoral perspective, looking at differences in consequences when policies are successful in raising exports for individual sectors of the UK economy.
The central purpose of this paper is to extend that previous work and reflect the detailed industrial focus of the UK Government's Sector Deals' by looking below the aggregate level. We wish to focus on the incremental changes in economic activity, territorial industrial emissions and energy use (as well as the indicators of emissions- and energy-intensity of GDP) that could arise from success in increasing exports in specific industrial sectors. The opportunities and challenges for the UK to benefit at a sectoral level from international activity in low carbon sectors is the focus of work by Carvalho and Fankhauser (2017). That work does not however examine the consequences of achieving export growth at the sectoral level, or the quantitative scale of such impacts, or any trade-off's between successes in different low carbon sectors.
By looking these factors we can identify whether it may be possible to target export policies at specific sectors to stimulate greener growth, i.e. positive impacts on economic indicators with (desirable) reductions in energy use and/or emissions. While we might expect that such sectors could include those with lower energy and emissions per unit of output, or smaller links to energy-using sectors, the full (economic and environmental) system-wide consequences of increasing exports at the sectoral level can be examined using an appropriately detailed CGE model of the UK. Specifically, we are interested in the following question: are there differences in the consequences for economic, energy and emissions indicators when policies are successful in raising exports for individual sectors of the UK economy?
Author(s): Haines, V., Lawton, C. and Spencer, J.
Published: 2014
Publisher: ETI
Author(s): Thompson, O., Rohse, M. and Barber, J.
Published: 2024
Publisher: UKERC
Emerging from a placement at the Office for Product Safety and Standards, UK, the study underscores the importance of reflexive, flexible, inclusive and interactive policymaking that integrates public engagement and considers the intricate relationships between social, technologic
Author(s): Froggatt, A., Wright, G. and Lockwood, M
Published: 2017
Publisher: Chatham House, the Royal Institute of International Affairs
• Negotiations over the terms of ‘Brexit’ are likely to be lengthy, complex and difficult. Energy is one policy area in which it may be easier for the UK and future EU27 to find common ground
• Energy cooperation over the past decades has helped European countries to enhance their geopolitical security, respond to growing climate threats, and create a competitive pan-European energy market. Maintaining close cooperation in this field, and the UK’s integration in the European internal energy market (IEM), will be important for the UK and the EU27 post-Brexit.
• Strong UK–EU27 energy cooperation could help ensure that existing and future interconnectors – physical pipes and cables that transfer energy across borders – between the UK, Ireland and the continent are used as efficiently as possible. As European economies, including the UK, look to decarbonize further, interconnectors will help minimize the costs of operating low-carbon electricity systems, and help lower electricity prices for UK consumers.
• The UK and the EU27 have identified the special relations between the UK and the Republic of Ireland as a priority for negotiations. Any future agreement needs to maintain the Single Electricity Market (SEM) across the island of Ireland, as failure to do so could result in an expensive duplication of infrastructure and governance.
• EU funds and European Investment Bank (EIB) loans account for around £2.5 billion of the UK’s energy-related infrastructure, climate change mitigation, and research and development (R&D) funding per year. Replacing these sources of finance will be necessary to ensure that the UK’s energy sector remains competitive and innovative.
• The UK intends to leave Euratom, the treaty which established the European Atomic Energy Community and which governs the EU’s nuclear industry. This process – dubbed ‘Brexatom’ – will have a significant impact on the functioning of the UK’s nuclear industry, particularly in respect to nuclear material safeguards, safety, supply, movement across borders and R&D. Achieving this within the two-year Brexit time frame will be extremely difficult. The UK will need to establish a framework that it can fall back on to ensure nuclear safety and security.
• Remaining fully integrated with the IEM would require the UK’s compliance with current and future EU energy market rules, as well with some EU environmental legislation. The UK government, British companies and other relevant stakeholders will need to maintain an active presence in Brussels and European energy forums, so that constructive and informed engagement can be sustained.
• Without a willingness to abide by the jurisdiction of the European Court of Justice (ECJ), and in the absence of a new joint UK–EU compliance mechanism, the UK may be required to leave the EU Emissions Trading System (ETS) – an instrument in the UK’s and EU’s fight against climate change. Leaving the ETS would be complicated, even more so if the UK leaves before the end of the ETS’s current phase (2013–20). To maintain carbon pricing in some form outside of the ETS, the UK would need to either establish its own emissions trading scheme, which would be complicated and time-consuming; or build on the carbon floor price and introduce a carbon tax. Either of these potential solutions would need political longevity to be effective.
• It is in both the UK’s and the EU27’s interests for the UK to continue to collaborate on energy policy with EU and non-EU member states. The best way to achieve this would be to establish a robust new pan-European energy partnership: an enlarged European Energy Union. In particular, such a partnership could offer a useful platform for aligning EU policies with those of third countries, including the UK, Norway and Switzerland, while allowing them to fully access the IEM and push forward common initiatives. Experience suggests that the EU27 would be more receptive to working within an existing framework or multilateral approach (as with the European Energy Community) than to adopting a bilateral approach (as the EU currently does in its energy relations with Switzerland).
Author(s): Snell, C. and Bevan, M.
Published: 2018
Publisher: UKERC
Too often fuel poverty is thought of as an issue that only impacts older disabled people, but the reality is that fuel poverty blights the lives of disabled people of any age: from children, to adults of working age, to older people.
The evidence gathered through the Policy Pathways to Justice in Energy Efficiency project is based on in-depth research conducted with national policy makers, with stakeholders who implement energy efficiency policy and with households on low incomes. It provides a clear picture of the energy needs of families on low incomes and of what needs to happen to make a real difference in their lives.
This guide for practitioners takes these findings and turns them into practical steps for people working in the fuel poverty and energy efficiency sectors supporting disabled people.
Author(s): Snell, C. and Bevan, M.
Published: 2018
Publisher: UKERC
Fuel poverty remains a pressing issue for over 4 million households in the UK today. Families with children living on low incomes are at particular risk of experiencing fuel poverty, and its effects can penetrate deep into everyday life and into the practical, social and emotional worlds of those who encounter it.
The evidence gathered through the Policy Pathways to Justice in Energy Efficiency project is based on in-depth research conducted with national policy makers, with stakeholders who implement energy efficiency policy and with households on low incomes. It provides a clear picture of the energy needs of families on low incomes and of what needs to happen to make a real difference in their lives.
This guide for practitioners takes these findings and turns them into practical steps for people working in the fuel poverty and energy efficiency sectors.
Author(s): Brand, C. and Anable, J.
Published: 2017
Publisher: UKERC
Evidence breifing from ESRC drawing upon research from the UK Energy Research Centre, outlined in the paper Modelling the uptake of plug-in vehicles, examines the timing, scale and impacts of the uptake of plug-in vehicles in the UK car market from a consumer perspective. The results show the importance of accounting for the varied and segmented nature of the car market, social and environmental factors, as well as considering how different uptake scenarios affect wider lifecycle emissions.
Author(s): Bellaby, P. and Eames, M.
Published: 2006
Publisher: UKERC
The aim of the TSEC Trust Symposium was to bring together key individuals from the UK energy research community with leading UK and international social scientists who had previously worked on issues of trust in other social and technological contexts, in order to:
Sustainable development, global warming and energy security are issues for the current generation and action/inaction now will profoundly affect future generations. Changes seem to be inevitable, but there is room for debate about the extent to which the market will deliver the necessary energy transition or there must be policy-led ‘managed change’. Whichever course is taken, changes on the scale and of the complexity required will depend on cooperation between stakeholders at many levels. Trust/mistrust will play a part, positive or negative, in securing that cooperation. As yet little work has been done on trust in an energy policy context. The TSEC Trust workshop and project are part of an attempt to build capacity among researchers to undertake that task.
Author(s): Witham, H.
Published: 2006
Publisher: UKERC
This was a participatory workshop to share ideas for the innovative use of current energy events in the teaching of energy and transport economics. There were no formal speakers, as participants were given the space, time and 'infrastructure' (i.e. activities and set-up) for networking and sharing. Two weeks before the event, registered participants were asked to answer some questions about their teaching interests, strengths and concerns e.g. approaches to teaching, difficult topics and teaching resources. The responses were used to shape the agenda for the day.
The impetus for this unusual format was that participants of more traditional seminars/workshops/conferences lament the lack of time for networking and sharing. This workshop aimed to remedy that by making those aspects the focus.
Author(s): Watson, J. and Gross, R.
Published: 2018
Publisher: UKERC
This inquiry is both welcome and timely. Whilst the Clean Growth Strategy emphasises the significant progress that has been made in reducing emissions, the Committee on Climate Change has identified a number of areas where policy needs to go further.
Innovation in a range of low carbon energy technologies and systems will be required to meet future carbon budgets and the 2050 target. Government policy has a vital role to play in supporting the development, demonstration and commercialisation of these technologies. Furthermore, policies to support innovation could also help to meet the wider economic objectives in the Industrial Strategy, by contributing to the development of new industries and jobs.
This submission draws on research and expertise from UKERC. The submission includes some introductory points in response to the committees questions on the Clean Growth Strategy, followed by some more specific responses to subsequent questions on government support for low carbon innovation.
Author(s): Gross, R., Heptonstall, P., Anderson, D., Green, T., Leach, M. and Skea, J.
Published: 2006
Publisher: UKERC
Author(s): Webb, J., Tingey, M. and Hawkey, D.
Published: 2017
Publisher: ETI
Author(s): Palmer, J. and Keay-Bright, S.
Published: 2007
Publisher: UKERC
Meeting the Energy Challenge, the White Paper on Energy, was published on May 23, 2007 following several years of intense energy policy review and debate. The BIEE and UKERC one day seminar brought together prominent academics in each of the topics of the White Paper, to present their assessment and critique of the paper and to lead discussion of its implications.
The workshop was structured around the Energy Review Consultation Topics:
Author(s): Braunholtz-Speight, T., Mander, S., Hannon, M., Hardy, J., McLachlan, C., Manderson, E. and Sharmina, M.
Published: 2018
Publisher: UKERC
It argues that, since its emergence in the UK in the late 1990s, community energy has grown through finding opportunities for smaller scale, decentralised energy activities in the UKs highly centralised energy system. The combination of development of renewable energy technologies, and the launch of the governments Feed-In Tariff Scheme (FITS) in 2010, produced a boom in the sector, especially around solar electricity generation.
Recent cuts to FITS rates and other policy changes place community energy at a crossroads. Some renewables activity will continue, but groups are exploring a wide range of activities, partnerships, and business models. We are engaging with the sector around outputs from our research, which include a survey and case studies, to co-develop recommendations and pathways for the future.
Author(s): Baker, P., Mitchell, C. and Woodman, B.
Published: 2009
Publisher: UKERC
The objective of this report is to review aspects of existing regulation, electricity market arrangements and industry practice in order to identify barriers in making the transition to a sustainable network.
Author(s): Eames, P., Loveday, D., Haines, V. and Romanos, P.
Published: 2014
Publisher: UKERC
The aims of the work undertaken were:
Author(s): Qadrdan, M., Woodman, B. and Wu, J.
Published: 2023
Publisher: UKERC
Author(s): Cairney, P., Munro, F., McHarg, A., McEwen, N., Turner, K. and Katris, A.
Published: 2019
Publisher: UKERC
This briefing paper uses the example of a changing UK/Scottish government relationship after Brexit to demonstratehow to analyse the role of politics and policymaking in the transformation of energy systems.
Brexit will create a new division of policymaking responsibilities between EU, UK, and devolved governments.
In this paper we divide energy policy competences according to levels of government. Initially, it suggests that we cangenerate a clear picture of multi-level policymaking. However, the formal allocation of competences only tells a partialstory, because actual powers may operate differently from the strict legal picture. These blurry boundaries betweenresponsibilities may be further complicated by Brexit, even if it looks like the removal of a layer of government willsimplify matters.Instead of imagining clearlines of accountability, think of energy policy as part of a complex policymaking system in which the link between powers, practices, and outcomes is unclear and an energy system, in which government isonly one of many influences on outcomes.
Key findings
Author(s): Barker, Terry and Foxon, Tim
Published: 2008
Publisher: UKERC
The study examines the macroeconomic rebound effect for the UK economy, arising from UK energy efficiency policies and programmes for 2000-2010. The work explores the relationships between energy efficiency, energy consumption, economic growth and policy interventions using a well-established and highly detailed macroeconomic model of the UK economy. The work has been carried out in response to a call from the UK Department for Environment, Food and Rural Affairs (Defra), with the support of Defra’s energy-efficiency policy team. As the focus of this study is to assess the magnitude of the macroeconomic rebound effect, the projections given in the report should not be taken as forecasts of future UK economic or environmental performance, e.g. the projections given here will differ from those in the 2006 Climate Change Programme.
Author(s): Sorrell, S.
Published: 2007
Publisher: UKERC
This report analyses the nature, operation and importance of rebound effects and provides a comprehensive review of the available evidence on this topic, together with closely related issues, such as the link between energy consumption and economic growth. It assesses the strengths and weaknesses of the evidence base, clarifies the underlying disputes and highlights the implications for energy and climate policy. The key message is that promoting energy efficiency remains an effective way of reducing energy consumption and carbon emissions. But more explicit treatment of rebound effects is needed to assess the contribution that energy efficiency can realistically make.
Author(s): Dimitriopolous, J. and Sorrell, S.
Published: 2006
Publisher: UKERC
The rebound effect results in part from an increased consumption of energy services following an improvement in the technical efficiency of delivering those services. This increased consumption offsets the energy savings that may otherwise be achieved and potentially undermines the rationale for policy measures to encourage energy efficiency.
The nature, definition and magnitude of the rebound effect are the focus of longrunning disputes with energy economics. This paper brings together previous theoretical work to provide a rigorous definition of the rebound effect, clarify key conceptual issues and highlight the consequences of various assumptions for empirical estimates of the effect. The focus is on the direct rebound effect for a single energy service - indirect and economy-wide rebound effects are not discussed.
Beginning with Khazzoom’s original definition of the rebound effect, we expose the limitations of three simplifying assumptions on which this definition is based.
First, we argue that capital costs form an important part of the total cost of providing energy services and that the higher cost of energy efficient conversion devices will reduce the magnitude of the rebound effect in many instances.
Second, we argue that energy efficiency should be treated as an endogenous variable and that empirical estimates of the rebound effect may need to apply a simultaneous equation model to capture the joint determination of key variables.
Third, we explore the implications of the opportunity costs of time in the production of energy services and highlight the consequences for energy use of improved ‘time efficiency’, the influence of time costs on the rebound effect and the existence of a parallel rebound effect with respect to time.
Each of these considerations serves to highlight the difficulties in obtaining reliable estimates of the rebound effect and the different factors that need to be controlled for. We discuss the implications of these findings for econometric studies and argue that several existing studies may overestimate the magnitude of the effect.
Author(s): Watson, J., Ketsopoulou, I., Dodds, P., Chaudry, M., Tindemans, S., Woolf, M. and Strbac, G.
Published: 2018
Publisher: UKERC
Energy security is a central goal of energy policy in most countries and with rapid changes occurring throughout the UK energy sector, it remains high on the policy agenda. Recent concerns about UK gas supplies - highlighted by National Grid's gas deficit warning demonstrated just how fundamentally important it is to have a reliable energy system.
Using a number of indicators, ‘The Security of UK Energy Futures’ assesses aspects of security such as energy availability, reliability, sustainability and affordability to examine how energy security risks will change over time
The report draws three main conclusions:
Author(s): Walker, A., Coonick, A., Greenham, N., Vinnicombe, K., Walls, M., Stojkovoska, B., Lucas, R., Klassen, A., Robertson, N., Dale, P., Agha, I., Warren, P., Tan, K.T., Bedford, S., Jones, L., Dobson, R., Thirkill, A., Burns, W. and Stoker, D.
Published: 2019
Publisher: REGEN
Regen has run the Solar Commission, a project that has been set up as part of the UKERC Whole Systems Network Fund.
Innovation and falling costs are leading to solar power playing an increasing role in the energy system. The UK has considerable scientific, technical and business experience in solar power and including technology, power storage, control systems, financing, and power purchase arrangements.
The role of the Commission has been to stimulate new thinking and encourage collaboration between academics, industry and system operators on the role of solar power in the energy system. The Commission examined areas where the UK could use its scientific and technical capabilities to play a leading role in innovation and industrial strategy opportunities in solar power.
The Commission was formed of industry leaders, academics and others and the Commissioners were responsible for investigating the future role of solar power in the energy system, considering the UK’s areas of strength in research and innovation in solar.
The findings will be used to inform and influence decision makers and leading players in the UK energy system and have been published in a non technical briefing at the House of Lords on 9 July 2019. The project engaged new voices and maximise female representation through collaboration with Regen’s Entrepreneurial Women in Renewables initiative.
This report presents the conclusions of the Commission, setting out:
A key finding of the Commission is that the UK has strong capabilities in many of the disruptiveinnovations transforming the solar PV market. The UK’s strengths in areas like innovative solar celltechnologies, storage, information and communication technologies and finance have sometimesbeen obscured by a focus on China’s domination of the manufacture of current generation crystallinesolar PV panels.
Author(s): Slade, R., Bauen, A. and Gross, R.
Published: 2010
Publisher: UKERC
This report has been produced by the UK Energy Research Centres Technology and Policy Assessment (TPA) function. The TPA was set up to address key controversies in the energy field through comprehensive assessments of the current state of knowledge. It aims to provide authoritative reports that set high standards for rigour and transparency, while explaining results in a way that is useful to policymakers.
This report precedes a TPA study of some of the key issues which face the deployment of bio-energy resources in the period to 2050. The objective of this report was to review existing estimates of the UK resource base and identify the most important assumptions and uncertainties affecting estimates of the domestic resource potential. It was envisaged that this would inform the scope of the subsequent bio-energy TPA. A secondary objective was to assist DECC develop bio-energy route maps, promised under the UKs 2009 Low Carbon Transition Plan.
Author(s): Ekins, P., Keppo, I., Skea, J., Strachan, N., Usher, W. and Anandarajah, G.
Published: 2013
Publisher: UKERC
Phase 1 of the UK Energy Research Centre (UKERC) facilitated the development of a state-of-the-art MARKAL model of the UK energy system. MARKAL is a well established linear optimisation, energy system model, developed by the Energy Technology Systems Analysis Programme (ETSAP) of the International Energy Agency (IEA) in the 1970s, and was until very recently used by it for its annual Energy Technology Perspectives (ETP) reports. It is also used by many other research teams round the world, and has been regularly updated and improved over the years through the ETSAP Implementing Agreement.
Towards the end of UKERCs Phase 1, in 2007-8, UK MARKAL was used for a major modelling exercise of different projections of the UK energy system to 2050, the results of which were published in Skea at al 2011. In the ensuing years, UK MARKAL was again used for major 2050-focused modelling projects: for the Committee on Climate Change (CCC) in 2010 (CCC 2010), for the Department of Energy and Climate Change (DECC) in 2011 (HMG 2011), and again for UKERC to update the Energy 2050 scenarios in 2012. This UKERC Research Report presents the main results of each of these modelling exercises, with a view to drawing out any key messages from the set as a whole.
Comparisons between such model runs, even of the same model, need to be drawn with care. Various assumptions, including cost and other data inputs to the model, were changed between the model runs, to reflect policy and other developments, and to incorporate new information. Some of the technology representations in the model were also improved. These changes have two implications for comparisons between such model runs. The first is that detailed conclusions about the cost-preferability of particular technologies, unless they emerge as clear favourites across the whole set of runs, are unlikely to be robust. This is because the cost uncertainties of possible developments in these technologies and their competitors over four decades are very great. Where, as will be seen in these cases, the costs between the major low-carbon technologies are, or may be, of the same orderof magnitude, then there are no strong grounds on the basis of these runs of preferring one over the others on cost grounds.
The second conclusion is more positive. Where consistent patterns of development of the energy system emerge across the different runs, despite the different inputs and the fact that the runs were carried out by different modellers and modelling teams, then more confidence may be placed in these patterns as likely features of the future UK energy system under the constraints applied, theprincipal constraint being reductions in greenhouse gas (GHG) emissions, or carbon dioxide (CO2) emissions in the case of the UK energy system, according to the provisions of the UK Climate Change Act of 2008. It is these consistent patterns that inform the main conclusions of this report, which are summarised here under a number of headings. The numbers on which these broad conclusions are based appear in the main report.
Author(s): Bradshaw, M., Bridge. G., Bouzarovski, S., Watson, J. and Dutton, J.
Published: 2014
Publisher: UKERC
A UKERC Research Report exploring the UK's global gas challenge. This report takes an interdisciplinary perspective, which marries energy security insights from politics and international relations, with detailed empirical understanding from energy studies and perspectives from economic geography that emphasise the spatial distribution of actors, networks and resource flows that comprise the global gas industry.
Natural gas production in the UK peaked in 2000, and in 2004 it became a net importer. A decade later and the UK now imports about half of the natural gas that it consumes. The central thesis of the project on which this report is based is that as the UK’s gas import dependence has grown, it has effectively been ‘globalising’ its gas security; consequently UK consumers are increasingly exposed to events in global gas markets.
Author(s): Dellaccio, O., Dicks, J., McGovern, M. and Stenning, J.
Published: 2022
Publisher: CREDS
Author(s): Ross, A.G., Allan, G., Figus,G., McGregor, P.G., Roy, G., Swales, J.K. and Turner, K.
Published: 2018
Publisher: UKERC
The wider impacts of energy policy on the macro-economy are increasingly recognised in the academic and policy-oriented literatures. Additionally, the interdependence of energy and economy implies that a (policy) change in the non-energy system impacts on the energy system. However, such spillovers on the energy system have not been extensively researched. We begin by analysing the impacts of export promotion policies - a key element of the UKs Industrial Strategy - on the energy system and energy policy goals. As the impacts of such policies are, in large part, transmitted via their effects on the economy, we adopt a computable general equilibrium model - UK-ENVI - that fully captures such interdependence. Our results suggest that an across-the-board stimulus to exports increases total energy use significantly. This does not come directly through energy exports, but indirectly through the energy sectors linkages to other sectors. Export led growth therefore impacts on energy use - and significantly so. This in turn is likely to have an adverse impact on emission targets. Policy makers should be aware of the fact that a successful implementation of the Industrial Strategy may create significant tensions with the UKs Clean Growth Strategy, for example, and with the goals of energy policy more generally. The importance of this effect will in practice depend upon: the mix of goods and services that are exported (an issue that we shall address once the export strategy is published); the success of low-carbon policies. Ultimately, a knowledge of the nature and scale of these spillover effects of economic policies on the energy system creates the potential for more effective and efficient policy making
Author(s): Howell, R.
Published: 2009
Publisher: UKERC
The overall objective of this research was to determine whether the operation of the CRAGs movement, and the experiences of individuals involved, can offer any useful information about the process of individual/household level carbon footprint reductions, the psychological effects of having a carbon allowance and trading system, and therefore any issues for consideration in the design of a Personal Carbon Trading policy. The specific aims were therefore:
Author(s): Eyre, N. and Lockwood, M.
Published: 2016
Publisher: UKERC
Author(s): Cox, E., Rostston, S. and Selby, J.
Published: 2016
Publisher: UKERC
Author(s): Dutton. J.
Published: 2016
Publisher: UKERC
Author(s): Katris, A., Turner, K., McEwen, N., Munro, F., Cairney, P. and McHarg, A.
Published: 2020
Publisher: UKERC
Energy Efficient Scotland (EES) is a large scale energy efficiency improvement programme to be implemented in Scotland. Over a 20-year period, currently scheduled to start in 2020, an amount in excess of 10billion is planned to be directed to the improvement of the energy efficiency in domestic and non-domestic buildings.
Funding for energy efficiency projects will come not only from the Scottish Government but also private interest-free and low interest loans as well as the successor(s) to the Energy Company Obligation (ECO). Aside from directing investment funds to the Scottish economy, promotion and support of energy efficiency through programmes such as EES, is one of the few instruments at the Scottish Governments disposal to conduct energy policy, especially on the energy demand side.
EES was officially announced in May 2018 with the publication of the EES Route Map. At that time the UK was already in the process of leaving the European Union: commonly referred to as Brexit.
Brexit, regardless of its final shape (which is currently unknown), is expected to affect policies in multiple ways including limitations to EU funds, skilled labour movement restrictions and increased import prices to name a few examples (among the potential impacts highlighted by different studies, reported in a 2018 Institute for Government report ). The magnitude and the exact nature of any impacts will be affected by the exact form that Brexit will have. In this shifting socio-economic landscape, EES will undoubtedly be affected in a range of ways.
In this working paper,we explore the funding limitations that Brexit could introduce to EES. Specifically, we identify two EES funding mechanisms that are likely to be affected; government-issued grants and privately-provided loans. For different reasons, these mechanisms are of paramount importance in order to achieve the EES goals as specified in the EES Route Map.
Author(s): Khalid, R. and Foulds, C.
Published: 2020
Publisher: UKERC