Currently applied filters
Energy storageAuthor(s): ETI
Published: 2017
Publisher: ETI
Author(s): Lidstone, L.
Published: 2017
Publisher: ETI
Author(s): Buckman, A.
Published: 2017
Publisher: ETI
Author(s): Wilson, G., Taylor, R. and Rowley, P
Published: 2018
Publisher: UKERC
This briefing note summarises Great Britain’s local gas demand from the 2nd of April 2017 to the 6th of March 2018 and compares this to electrical supply. The data covers the UK cold weather event on the 1st March, providing insights into the scale of hourly energy flows through both networks.
A peak hourly local gas demand of 214 GW occurred at 6pm on the 1st of March, which compared to a peak electrical supply of 53 GW occurring at the same time.
The data highlights a critical challenge – managing the 3-hour difference in demand from 5am to 8am on the local gas network during the heating season. Whilst flexibility in the gas system is provided using a change in pressure to store extra energy in the network to meet increasing demand, the electrical system has no comparable intrinsic equivalent.
The findings add to previous work funded by UKERC on thermal energy storage , heat incumbency, and flexibility of electrical systems to provide insights into the decarbonisation of heat in Britain, helping to inform decision-making, modelling of future networks and highlighting key areas for future research and innovation.
A greater research and innovation focus to reduce the 5am-8am 3-hour difference in heat demand is necessary.
Author(s): Leicester, P. and Rowley, P.
Published: 2017
Publisher: ETI
Author(s): Element Energy
Published: 2017
Publisher: ETI
Author(s): Lidstone, L.
Published: 2017
Publisher: ETI
Author(s): Lidstone, L.
Published: 2017
Publisher: ETI
Author(s): Element Energy
Published: 2016
Publisher: ETI
Author(s): Bell, K. and Hawker, G.
Published: 2015
Publisher: UKERC
This working Paper has been prompted by an inquiry into low carbon networks launched in September 2015 by the House of Commons Select Committee on Energy and Climate Change. A response on behalf of UKERC has been submitted to the Committee. This present paper expands on many of the themes included in that response and provides more detail and discussion
Author(s): Colechin, M.
Published: 2016
Publisher: ETI
Author(s): Bell, K., Blyth, W., Bradshaw, M., Green, R., Gross, R., Jansem, M., Ostrovnaya, A. and Webb, J.
Published: 2022
Publisher: UKERC
Author(s): Hitachi, EDF Energy, Imperial College London, Element Energy
Published: 2013
Publisher: ETI
Author(s): ETI
Published: 2016
Publisher: ETI
Author(s): Buckman, A.
Published: 2017
Publisher: ETI
Author(s): Morris, L.
Published: 2014
Publisher: ETI
Author(s): Buro Happold
Published: 2011
Publisher: ETI
Author(s): Dickinson, J.
Published: 2011
Publisher: ETI
Author(s): Buro Happold
Published: 2011
Publisher: ETI
Author(s): ETI
Published: 2010
Publisher: ETI
Author(s): Romero, P. and Cooke, H.
Published: 2016
Publisher: ETI
Author(s): Speirs, J., Houari, Y., Contestabile, M., Gross, R. and Gross, B.
Published: 2013
Publisher: UKERC
The paper examines demand for lithium and neodymium from the EV industry. Lithium is used in Li-Ion EV batteries and neodymium is used in permanent magnets in electric motors and wind turbine generators. Global demand scenarios for EVs vary widely, though all anticipate a considerable growth in the EV market over the coming decades, driven largely by decarbonisation goals.
The paper then examines wind turbines, another low carbon use of neodymium. Again global demand for wind turbines and estimates of future material intensity are key to understanding future demand. It is also important to estimate the number of turbines using permanent magnet designs, since generators without permanent magnets are in common use. Decarbonisation goals are predicted to drive demand for wind turbines in the future, with several studies agreeing that future manufacturing of turbines will increase significantly. Based on this analysis, demand for neodymium from wind turbines could be between 600 and 6,000 tonnes per year by 2050.
Author(s): Speirs, J., Gross, R., Contestabile, M., Candelise, C., Houari, Y. and Gross, B.
Published: 2014
Publisher: UKERC
There is increasing concern that future supply of some lesser known critical metals will not be sufficient to meet rising demand in the low-carbon technology sector. A rising global population, significant economic growth in the developing world, and increasing technological sophistication have all contributed to a surge in demand for a broad range of metal resources. In the future, this trend is expected to continue as the growth in low-carbon technologies compounds these other drivers of demand. This report examines the issues surrounding future supply and demand for critical metals - including Cobalt, Gallium, Germanium, Indium, Lithium, Platinum, Selenium, Silver, Tellurium, and Rare earth Metals.
Author(s): Lidstone, L.
Published: 2017
Publisher: ETI
Author(s): Coleman, J.
Published: 2016
Publisher: ETI
Author(s): Lidstone, L.
Published: 2017
Publisher: ETI
Author(s): Watson, J., Ekins, P., Wright, L., Eyre, N., Bell, K., Darby, S., Bradshaw, M., Webb, J., Gross, R., Anable, J., Brand, C., Chilvers, J., and Pidgeon, N.
Published: 2016
Publisher: UKERC
This review takes stock of UK energy policy ahead of the Autumn Statement, Industrial Strategy and new Emissions Reduction Plan. Its main recommendations are:
Author(s): Flett, G., Kelly, N. and McGhee, R.
Published: 2018
Publisher: UKERC
Energy System Demonstrators are physical demonstrations testing new technologies for low-carbon energy infrastructure.
A review of energy systems demonstrator projects in the UK was undertaken for UKERC by the Energy Systems Research Unit (ESRU) at the University of Strathclyde. The review encompassed 119 demonstrators and consisted of two phases: 1) the identification of demonstrator projects and 2) an analysis of projects and their outcomes.
The review defined an energy system demonstrator as “the deployment and testing of more than one technology type that could underpin the operation of a low-carbon energy infrastructure in the future”. Only demonstrators that post-date the 2008 Climate Change Act were included and that included a physical demonstration at one or more UK sites. 119 projects were identified that met the search criteria.
There were two phases of review activity. Phase 1 involved identification and documentation of demonstration projects, involving a systematic search to identify and record the details of projects. Phase 2 was a review of project outcomes and outputs, particularly end-of-project evaluations, covering technical, economic and social outcomes where available.
The review outputs (available here) are a final report summarising the findings, 119 demonstrator project summaries (the Phase 1 reports), 119 demonstrator output analyses (the Phase 2 reports) and a GIS (Geographic Information System) map and database showing the locations and project details of the demonstrators.
The final report, attendant project summaries and GIS data are intended to provide policy makers and funding bodies with an overview of the existing demonstrator “landscape”, enabling decisions on future demonstrator calls and the focus of those calls to be made with a clearer knowledge of what has already been done.
Author(s): Buckman, A.
Published: 2017
Publisher: ETI
Author(s): Humphry, L, and Greenleaf, J.
Published: 2017
Publisher: ETI
Author(s): Humphry, L, and Greenleaf, J.
Published: 2017
Publisher: ETI
Author(s): Greenleaf, J. and Humphry, L.
Published: 2017
Publisher: ETI
Author(s): Humphry, L. and Greenleaf, J.
Published: 2016
Publisher: ETI
Author(s): Humphry, L. and Greenleaf, J.
Published: 2016
Publisher: ETI
Author(s): IEA
Published: 2014
Publisher: International Energy Authority
Author(s): Keay-Bright, S.
Published: 2007
Publisher: UKERC
The aim of this workshop was to bring together a group of leading workers in the fields of energy technologies, combinatorial methods and computer simulation techniques, to define target performance for materials, and to explore the best methods to discover and develop materials capable of achieving these targets. We focussed mainly on electrochemical devices in order to reduce the scope of the meeting and to obtain a more focussed view, albeit in a rather reduced materials set. The final aim was not to produce a standard proceedings volume but rather to capture the important discussions that took place between the experts in the various fields both in the sessions and in the breakout sessions that followed from the main sessions.
Author(s): Gross, R., Heptonstall, P., Anderson, D., Green, T., Leach, M. and Skea, J.
Published: 2006
Publisher: UKERC
Author(s): Eames, P., Loveday, D., Haines, V. and Romanos, P.
Published: 2014
Publisher: UKERC
The aims of the work undertaken were:
Author(s): Chaudry, M., Qadrdan, M., Chi, L. and Wu, J.
Published: 2022
Publisher: UKERC
Author(s): Lidstone, L
Published: 2017
Publisher: ETI
Author(s): Bell, K.
Published: 2017
Publisher: UKERC
This Working Paper has been motivated by the growth of distributed energy resources (DER) on the electricity system in Britain, i.e. generation, storage and flexible demand that is connected at distribution network voltages, and the consultation published by Ofgem and BEIS in November 2016 on the subject of electricity system flexibility. It aims to give a very basic and rapid introduction to some of the issues and their origins.
Author(s): ETI
Published: 2013
Publisher: ETI
Author(s): ETI
Published: 2010
Publisher: ETI
Author(s): Hull, L., Gillie, M.,Dudek, E., Irvine, J., Clarke, R., Cruden, A., and Houghton, T.
Published: 2011
Publisher: ETI
Author(s): Lidstone, L.
Published: 2017
Publisher: ETI
Author(s): Ruddell, A.J.
Published: 2013
Publisher: UKERC
This has been superseded by a new 2019 landscape
This UKERC Research Landscape provides an overview of the competencies and publicly funded activities in energy storage research, development and demonstration (RD&D) in the UK. It covers the main funding streams, research providers, infrastructure, networks and UK participation in international activities.
UKERC ENERGY RESEARCH LANDSCAPE: ENERGY STORAGE
Author(s): Ruddell, A.J.
Published: 2020
Publisher: UKERC
This UKERC Research Landscape provides an overview of the competencies and publicly funded activities in energy storage research, development and demonstration (RD&D) in the UK. It covers the main funding streams, research providers, infrastructure, networks and UK participation in international activities.
UKERC ENERGY RESEARCH LANDSCAPE: ENERGY STORAGE
Author(s): Chaudry, M., Bagdanavicius, A., Thomas, L., Sansom, R., Calderon, J.O., Jenkins, N. and Strbac. G
Published: 2014
Publisher: UKERC
The UK power system experienced a period of significant and rapid expansion during the late 1980s and in the 1990s. Many power generation assets are now approaching the end of their useful life and need to be replaced as we decarbonise the overall energy system. Developments in distributed generation and other technologies open important questions as to whether the traditional approaches to development and operation of power systems are still adequate and whether the anticipated major re-investment in transmission and distribution networks could be avoided by adopting new technologies such as smart grids, smart meters and a greater emphasis on demand side participation.
High level research issues identified within the UKERC Energy Supply theme cover a number of areas, including:
These projects are reviewed in this report and from these high level research issues, some of the key research challenges identified are summarised as follows:
Author(s): Bell, K., Eyre, N., Hawker, G., Castagneto Gissey, G., Dodds, P., Darby, S., Irvine, J., Paul, G. and Watson J
Published: 2017
Publisher: UKERC
Scope of the Call for Evidence and objectives in respect of flexibility
We welcome the attention being paid by Ofgem and BEIS to the need for flexibility in Britain’s electricity system. In our view the main reason to support electricity system flexibility is that it can help minimise the costs of meeting the UK’s statutory climate targets whilst ensuring that system security is not compromised. The electricity system’s ability to adapt to changing demand in timescales of years down to minutes and varying availability of power from different resources will be extremely important to meeting these policy goals. Furthermore, action is needed so that those consumers that are best able to adapt their patterns of use of electricity have sufficient incentives and rewards for doing so. One manifestation of the main goal in accommodating future generation and demand is an objective to maximise the utilisation (across each year of operation) of electricity system assets, i.e. generators, network components and storage facilities.
Whilst the title of the call for evidence focuses on ‘a smart, flexible energy system’, most of the raised relate to the electricity system. We have therefore focused most of our responses on electricity rather than the energy system as a whole. Our responses are selective. We have only answered those questions where we can offer relevant evidence, based on our research and expertise.
Author(s): Darby, S
Published: 2017
Publisher: UKERC
Scope of the Call for Evidence and objectives in respect of flexibility
We welcome the attention being paid by Ofgem and BEIS to the need for flexibility in Britain’s electricity system. In our view the main reason to support electricity system flexibility is that it can help minimise the costs of meeting the UK’s statutory climate targets whilst ensuring that system security is not compromised. The electricity system’s ability to adapt to changing demand in timescales of years down to minutes and varying availability of power from different resources will be extremely important to meeting these policy goals. Furthermore, action is needed so that those consumers that are best able to adapt their patterns of use of electricity have sufficient incentives and rewards for doing so. One manifestation of the main goal in accommodating future generation and demandis an objective to maximise the utilisation (across each year of operation) of electricity system assets, i.e. generators, network components and storage facilities.
Whilst the title of the call for evidence focuses on ‘a smart, flexible energy system’, most of the raised relate to the electricity system. We have therefore focused most of our responses on electricity rather than the energy system as a whole. Our responses are selective. We have only answered those questions where we can offer relevant evidence, based on our research and expertise.
This document only answers questions 28 -32 inclusive. Another document is available http://ukerc.rl.ac.uk/UCAT/PUBLICATIONS/Response_to_Ofgem-BEIS_call_for_evidence-smart_flexible_energy_system.pdf which gives answers to other questions in the consultation.
Author(s): Clarke, D.
Published: 2016
Publisher: ETI
Show more results