Currently applied filters
Energy ModelsAuthor(s): Walker, I. and Staw, T.
Published: 2017
Publisher: ETI
Author(s): Walker, I., Staw, T., Stewart, A. and Tiniou, E.
Published: 2017
Publisher: ETI
Author(s): Walker, I. and Staw, T.
Published: 2017
Publisher: ETI
Author(s): Chilvers, J., Pallet, H., Hargreaves, T., Stephanides, P. and Waller, L.
Published: 2022
Publisher: UKERC
Author(s): Cronin, J., Pye, S., Price, J. and Butnar, I.
Published: 2020
Publisher: UKERC
This paper explores the sensitivity of energy system decarbonisation pathways to the role of afforestation and reduced energy demands as a means to lessen reliance on carbon dioxide removal.
The stringency of climate targets set out in the Paris Agreement has placed strong emphasis on the role of carbon dioxide removal (CDR) over this century. However, there are large uncertainties around the technical and economic viability and the sustainability of large-scale CDR options. These uncertainties have prompted further consideration of the role of bioenergy in decarbonisation pathways and the potential land-use trade-offs between energy crops and afforestation. The interest in afforestation is motivated by its potential as an alternative to large-scale bioenergy with carbon capture and storage (BECCS), with its arguably lower risk supply chains, and multiple co-benefits. Furthermore, doubt over the viability of large-scale CDR has prompted a renewed examination of the extent to which their need can be offset by lowering energy demands.
A global optimisation model (TIAM-UCL) was used to examine decarbonisation pathways for the global energy system. Based on core assumptions, where energy demands follow business as usual trends and degraded land is used for energy crops, the model was unable to find a solution for a 1.5°C target. Over the period 2020-2100, the carbon budget of GtCO2 is exceeded by 332 GtCO2.
Scenarios where also run to examine how the least-cost decarbonisation pathway changes if i) energy demands are significantly reduced, or ii) degraded land is used for large-scale afforestation instead of energy crops. Each option on its own reduced the CO2 budget exceedance but both were required to allow the model to meet the 1.5°C target.
Under the 2°C target, afforestation reduced the reliance on BECCS by 60%. Under the 1.5°C target, the system still used all of the biomass available, as the target is so ambitious. When the energy demands were lower, the effect of afforestation on biomass use was dependent on the climate target. Under the 2°C target, less biomass was used across all economic sectors, whereas under the stringent 1.5°C target, all the available wood and crop biomass was exploited, but its use shifted away from the production of liquid fuels towards use in power generation.
Lowering energy service demands had a larger effect on the energy mix than large-scale afforestation. This is because demands are lowered differently across the sectors according to their economic drivers. However, afforestation had a bigger impact on the marginal cost of climate change mitigation, as it substantially decreases the scale and pace of change required by the energy system, especially in the 2°C case.
Given its key role, afforestation should be considered more in deep decarbonisation scenarios, as should lower demand scenarios.
Lowering energy demand and introducing large-scale afforestation both present significant challenges and opportunities. Further work should focus on factors affecting the carbon sequestration potential of afforestation, along with an interdisciplinary research agenda on the scope for large scale energy demand reduction. Research on the social, technical and economic factors that affect the potential for converting abandoned agricultural land to energy crops or new forest would be beneficial. An interdisciplinary research agenda is needed that brings together techno-economic modelling and qualitative scenario development with research on the social change that could lead to large reductions in energy demand
Author(s): Nolden, C., Moya Mose, T., Sugar, K., Kommidi, A. and Fox, S.
Published: 2023
Publisher: UKERC
Author(s): Greenleaf, J. and Rix, O.
Published: 2016
Publisher: ETI
Author(s): Lidstone, L.
Published: 2017
Publisher: ETI
Author(s): Lidstone, L.
Published: 2017
Publisher: ETI
Author(s): Chappell, J., West, A., Skippon, S., Wilkinson, P., White, M. and Willis, S.
Published: 2017
Publisher: ETI
Author(s): Watson, J., Gross, R., Bell, K., Waddams, C., Temperton, I., Barrett, J., Rhodes, A., Gill, S. and Bays, J
Published: 2017
Publisher: UKERC
We welcome the opportunity to comment on the findings of the Cost of Energy Review, conducted by Professor Dieter Helm. In our response, we address most of the questions set out in the Call for Evidence from BEIS. Before turning to these specific questions, we have three general observations about the Review and the Call for Evidence.
First, whilst the review title focuses on the cost of energy, this is misleading. The terms of reference and the Review report make it clear that the main focus is electricity rather than energy in general.
This distinction is important since the data shows significant differences in the position of UK electricity and gas costs when compared to costs in other countries. There are also differences between relative costs for households and relative costs for business energy consumers. UK electricity prices are higher up the European league table than prices for gas. Electricity prices for energy intensive industries in the UK are particularly high.
Our second comment is that there are important distinctions between prices, costs and bills. Whilst much of the debate focuses on prices, the costs of energy for consumers also depends on their energy consumption. Therefore, it is also important to consider energy efficiency of buildings, appliances and industrial processes since these are a key determinant of costs.
Our third comment is that costs need to be considered for the electricity system as a whole. Whilst the separate questions in the Call for Evidence about generation, networks and retail supply are understandable, costs to consumers partly depend on interactions between these components of the electricity system. This compartmentalised approach to the evidence base could mean that some of these systemic interactions are missed.
Author(s): ETI
Published: 2017
Publisher: ETI
Author(s): ETI
Published: 2016
Publisher: ETI
Author(s): Newton-Cross, G.
Published: 2015
Publisher: ETI
Author(s): Li, P. and Strachan, N.
Published: 2021
Publisher: UKERC
Author(s): Li, P. and Strachan, N.
Published: 2021
Publisher: UKERC
Author(s): Strachan, N. and Li, P.
Published: 2021
Publisher: UKERC
Author(s): Jones Lang LaSalle Ltd (JLL)
Published: 2018
Publisher: ETI
Author(s): Baringa Partners LLP
Published: 2017
Publisher: ETI
Author(s): Ternent, L.
Published: 2016
Publisher: ETI
Author(s): Energy Systems Catapult
Published: 2018
Publisher: ETI
Author(s): Baringa Partners LLP
Published: 2017
Publisher: ETI
Author(s): Baringa Partners LLP
Published: 2017
Publisher: ETI
Author(s): Energy Systems Catapult
Published: 2018
Publisher: ETI
Author(s): Bates, C.
Published: 2018
Publisher: ETI
Author(s): Energy Systems Catapult
Published: 2018
Publisher: ETI
Author(s): Tuff, G.
Published: 2018
Publisher: ETI
Author(s): Cook, S. and Morgan, J.
Published: 2016
Publisher: ETI
Author(s): Jones Lang LaSalle Ltd (JLL)
Published: 2018
Publisher: ETI
Author(s): Bell, D., Hopkins, M. and Winter, S.
Published: 2018
Publisher: ETI
Author(s): ETI
Published: 2018
Publisher: ETI
Author(s): Mee, D
Published: 2018
Publisher: ETI
Author(s): Okoli, J.
Published: 2018
Publisher: ETI
Author(s): Buckman, A.
Published: 2017
Publisher: ETI
Author(s): Haf, S. and Robison, R.
Published: 2020
Publisher: UKERC
Local Authorities role in the energy transition and working with their citizens in doing so, has been recognised as crucial to paving transition paths. Material collated within this report is intended to better inform Energy Cities and its partners, Local Authorities and Municipalities, civil society groups and others interested in how citizens can be supported and encouraged to participate in energy system developments as a part of the energy transition. The findings in this report are therefore intended to directly help Local Authorities across Europe in implementing more participative approaches to their governance practices in energy systems.
Delivered as part of the Energy-PIECES project, this report was developed during a secondment with Energy Cities.
Author(s): Oluleye, G. and Jobson, M.
Published: 2012
Publisher: ETI
Author(s): Jobson, M. and Vasquez, L.
Published: 2011
Publisher: ETI
Author(s): McKoen, K., Koch, A., Murshed, S.M., Meidl, P., Nichersu, A., Jumel, S. and Limani, B.
Published: 2010
Publisher: ETI
Author(s): Meidl, P., Sipowicz, M., Murshed, S.M., Jumel, S., Jobson, M., Oluleye, G., OHanlon, I., McKeon, K., Griessbaum, N., Nichersu, A.
Published: 2012
Publisher: ETI
Author(s): Barton, M., Kirton, A., Silletti, B., Smith, R., Gautier, L., Neeson, S., McKoen, K., McWilliam, L. and Jobson, M
Published: 2010
Publisher: ETI
Author(s): Lok, K., Adler, D., Cripps, A and Woods, P.
Published: 2011
Publisher: ETI
Author(s): Hardt, L., Brockway, P., Taylor, P., Barrett, J., Gross, R. and Heptonstall, P.
Published: 2019
Publisher: UKERC
Under the UK Climate Change Act 2008, the government is legally bound to reduce greenhouse gas (GHG) emissions by 80% by 2050 relative to 1990 levels.
Historically, the focus of energy policy in the UK has been on supply-side policies, such as decarbonisation of electricity generation through greater use of low carbon technologies like wind and solar. Increasingly, however, demand-side energy policies are being recognised as having important contributions to make to achieving emission reduction targets, through reducing energy demand or by making energy demand more flexible and compatible with variable renewable energy sources. Such demand-side policies can seek to promote a wide range of technologies and behaviours, for example improved buildinginsulation, reduction in the use of energy intensive materials and increases in teleworking to reduce commuting.
To fully realise the potential of demand-side energy policies, it is important that they can be adequately represented in quantitative energy models, because such models play an important role in informing UK energy policy. However, we do not currently have a good understanding of how well the different energy models that inform UK government energy policy represent energy demand and demand-side energy policies.
Therefore we have undertaken a Rapid Evidence Assessment (a constrained form of systematic review) to examine the energy models that have informed energy policy documents published by the UK government between 2007 and 2017. The overarching question this review seeks to address is:
How suitableare the energy models used toinform UK government energy policy for exploring the full range of contributions that demand-side energy policies can make to climate change mitigation?
Our Rapid Evidence Assessment reveals that the core strength of current energy modelling is the detailed representation of technologies, with many models featuring information on hundreds of potential technological options for increasing energy efficiency. Although uncertainties exist around these technological options, these models allow us to gain a coherent and realistic understanding of how different combinations of technologies could satisfy our future energy service demands under different low-carbon scenarios.
However, the modelling landscape reveals two key limitations with regard to the representationof non-technological drivers of energy demand:
Author(s): Heaton, C.
Published: 2014
Publisher: ETI
Author(s): Welsby, D.
Published: 2018
Publisher: UKERC
This UKERC working paper reviews the literature on modelling natural gas demand and supply. This includes modelling natural gas markets in isolation, and as part of its role in the wider energy system.
This review is part of the work on a new, global gas model at the Institute for Sustainable Resources at University College London, through a UKERC PhD Studentship. The focus of the new model is on global gas production and trade, and its coupling with the TIMES Integrated Assessment model at University College London (TIAM-UCL) to represent gas demand.
The main section of this working paper provides a review of existing methods which model both supply chain and demand dynamics of natural gas (Part 1: recoverable volumes and corresponding costs of natural gas; Part 2: wider energy-system models; Part 3: natural gas market models). As with any modelling, it was found that there is always a trade-off between necessary simplifications, and the uncertainties and complexities which surround energy-economic-environmental systems.
In Part 1, this paper reviews a range of studies that have estimated recoverable volumes of natural gas. This includes both deterministic (e.g. a single point estimates of natural gas) and stochastic (e.g. probabilistic estimates including ranges of uncertainty) modelling methods, and the strengths and limitations of the approaches employed. The overall conclusion is that some level of probabilistic assessment is required when estimating recoverable volumes of natural gas and the cost range of extraction, particularly given the huge uncertainties inherent in the development of these resources (techno-economic, geological, environmental).
A key contribution of this review, in Part 2, is how natural gas is represented in energy system and integrated assessment models. This represents how gas supply and demand dynamics are also driven by wider developments in energy and environmental systems. Standalone natural gas models, described in Part 3, include gas market complexities. These have more disaggregated time-slices/temporal horizons in order to capture seasonality and the interaction between market agents. However, there is a trade-off between the temporal disaggregation, and the overall scope of the model. In short, the decision to take gas consumption from TIAM-UCL yields the benefit of a whole systems approach in the long-run, whilst limiting seasonal disaggregation in the short-term.
In section III, the paper introduces a new natural gas production and trade model, which is linked to TIAM-UCL. This linkage includes an aggregation of supply cost curves from a field-level gas volume and cost database, into the regions in TIAM-UCL. The gas model is able to account for aspects of gas markets which TIAM-UCL does not have in its architecture; e.g. fiscal regimes, take-or-pay contracts, price indexation.
Given the proprietary nature of cost data for natural gas extraction, a linear regression model was used to assign supply costs (the capital and operating expenditures required to get the gas out of the ground) to gas fields where no public information was available. This gas model aims to provide insights by quantifying various parameters which determine supply costs for individual natural gas fields, both developed and undeveloped; these include water depths, reservoir depths, the levels of hydrogen sulphide or carbon dioxide, and assumed risks to investment (e.g. due to location, political conditions, etc.).
The combination of the two models is intended to model scenarios, providing new insights into future natural gas price formation mechanics and longer-term policy developments which could alter/influence supply and demand.
Author(s): Chaudry M, Hawker G, Qadrdan M, Broad O, Webb J, Wade F, Britton J, Wu J.
Published: 2022
Publisher: UKERC
Author(s): Coleman, J.
Published: 2016
Publisher: ETI
Author(s): Coleman, J., Heaton, C., Day, G. and Milne, S.
Published: 2015
Publisher: ETI
Author(s): ETI, E4Tech, Imperial College Consultants (ICON),
Published: 2015
Publisher: ETI
Author(s): Bonsall, P., Cross, J., and Shepherd, J.
Published: 2011
Publisher: ETI
Author(s): Britton, J. and Webb, J.
Published: 2024
Publisher: UKERC
Author(s): Gross, R., Bradshaw, M., Bridge, G., Weszkalnys, G., Rattle, I., Taylor, P., Lowes, R., Qadrdan, M., Wu, J., Anable,J., Beaumont, N., Hastings, A., Holland, R., Lovett, A., Shepherd, A..
Published: 2021
Publisher: UKERC
With a focus on gas and the UK continental shelf, industrial decarbonisation, heat, mobility and the environment, we look at developments both at home and internationally and ask whether the UK is a leader in decarbonisation, and if the transition is being managed as well as it could be.
Author(s): Gailani, A., Cooper, S., Allen, S., Taylor, P. and Simon, R.
Published: 2021
Publisher: UKERC
Author(s): Eadson, W., Hampton, S., Sugar, K., Blundel, R. and Northall, P.
Published: 2024
Publisher: UKERC
Author(s): Humphry, L, and Greenleaf, J.
Published: 2017
Publisher: ETI
Author(s): Humphry, L, and Greenleaf, J.
Published: 2017
Publisher: ETI
Author(s): Greenleaf, J. and Humphry, L.
Published: 2017
Publisher: ETI
Author(s): Humphry, L. and Greenleaf, J.
Published: 2016
Publisher: ETI
Author(s): Allan, G., Barrett, J., Brockway, P., Sakai, M., Hardt, L., McGregor, P.G., Ross, A.G., Roy, G., Swales, K. and Turner, K.
Published: 2019
Publisher: UKERC
This study investigates how an increase in exports (a key pillar in the UK Industrial Strategy) could impact energy and industrial policy by comparing two types of energy-economy models.
Achieving the targets for reducing greenhouse gas emissions set out in the UK Climate Change Act will require a significant transformation in the UK's energy system.
At the same time, the government is pursuing a new UK Industrial Strategy, which aims to improve labour productivity, create high-quality jobs and boost exports across the UK.
The economic and the energy systems in the UK are tightly linked and so policies adopted in one area will produce spillover effects to the other.
To achieve the objectives set out in the two strategies it is therefore vital to understand how the policies in the energy system will affect economic development and vice versa.
Our study contributes to this by investigating how an increase in exports (a key pillar in the UK Industrial Strategy) could impact energy and industrial policy.
We address this question by systematically comparing the results of two types of energy-economy models of the UK, a computable general equilibrium model (CGE) and a macroeconometric (ME) model.
In both models we analyse a stimulus to demand from an increase in exports arising from a successful export strategy as motivated by the UK Industrial Strategy.
The qualitative results of the export stimulus are similar across all models in that GDP and employment are always stimulated. In this sense, the results are reassuring for the UK’s Industrial Strategy that emphasises export promotion.
However, the models also find that total energy use and CO2 emissions increase, and so does the energy intensity and emissions intensity of GDP.
The increase in CO2 emissions occur because the study identifies the energy and CO2 impacts of an export shock with other things remaining unchanged. Therefore the models do not simultaneously incorporate the UK carbon budgets or policies to support energy efficiency and decarbonisation of energy supplies.
However, our analysis reveals the likely adjustment of energy and climate policies to counteract the increase in CO2 and energy intensity that may result from export promotion. It therefore emphasises the need to complement UK industrial policies with appropriate action on energy use and carbon emissions to meet statutory carbon targets set by the Climate Change Act (2008).
The results highlight the interdependence of the energy and economic systems. They show that there are benefits to coordinating strategic initiatives aimed at stimulating economic activity with those aimed at tackling carbon emissions, as envisaged in the UK’s Clean Growth Strategy.
Author(s): Lidstone, L.
Published: 2016
Publisher: ETI
Author(s): Ede, S.
Published: 2009
Publisher: ETI
Author(s): Mohamad, S. Mansourim C. and Bouchachia, H.
Published: 2018
Publisher: ETI
Author(s): Mohamad, S. and Bouchachia, H.
Published: 2018
Publisher: ETI
Author(s): Ngoc Canh Duong, Jamil, W. and Bouchachia , H.
Published: 2018
Publisher: ETI
Author(s): Favaro, A., Lowery, C. and Zhihan Xu
Published: 2018
Publisher: ETI
Author(s): Favaro, A., Zhihan Xu and Lowery, C.
Published: 2018
Publisher: ETI
Author(s): Jamil, W. and Bouchachia, H.
Published: 2018
Publisher: ETI
Author(s): Mohamad, S. and Bouchachia, H.
Published: 2018
Publisher: ETI
Author(s): Mohamad, S. Mansourim C. and Bouchachia, H.
Published: 2018
Publisher: ETI
Author(s): Beckhelling, J.
Published: 2015
Publisher: ETI
Author(s): Energy Systems Catapult
Published: 2018
Publisher: ETI
Author(s): Energy Systems Catapult
Published: 2018
Publisher: ETI
Author(s): Korais, E.
Published: 2017
Publisher: ETI
Author(s): Energy Systems Catapult
Published: 2016
Publisher: ETI
Author(s): Bays, J., Nduka, E., Jimoh, M., Liu, L., Silva, N., Liu, X., Bharucha, Z., Khalid, R., Caprotti, F., Bobbins, K., Pailman, W., Bookbinder, R., Garret, J. and Gul, M.
Published: 2024
Publisher: UKERC
Show more results