Projects: Projects for Investigator |
||
Reference Number | EP/V001809/1 | |
Title | Practice and theory in the design of martensitic steels | |
Status | Started | |
Energy Categories | Renewable Energy Sources(Ocean Energy) 2%; Renewable Energy Sources(Wind Energy) 2%; Energy Efficiency(Transport) 2%; Not Energy Related 94%; |
|
Research Types | Basic and strategic applied research 100% | |
Science and Technology Fields | PHYSICAL SCIENCES AND MATHEMATICS (Metallurgy and Materials) 100% | |
UKERC Cross Cutting Characterisation | Not Cross-cutting 100% | |
Principal Investigator |
Professor WM Rainforth No email address given Engineering Materials University of Sheffield |
|
Award Type | Standard | |
Funding Source | EPSRC | |
Start Date | 01 March 2021 | |
End Date | 31 October 2024 | |
Duration | 44 months | |
Total Grant Value | £446,772 | |
Industrial Sectors | Aerospace; Defence and Marine; Transport Systems and Vehicles | |
Region | Yorkshire & Humberside | |
Programme | NC : Engineering | |
Investigators | Principal Investigator | Professor WM Rainforth , Engineering Materials, University of Sheffield (99.999%) |
Other Investigator | Dr P Gong , Engineering Materials, University of Sheffield (0.001%) |
|
Industrial Collaborator | Project Contact , SKF Engineering & Research Services B.V., The Netherlands (0.000%) Project Contact , Rolls-Royce PLC (0.000%) Project Contact , ThyssenKrupp Steel Europe, Germany (0.000%) |
|
Web Site | ||
Objectives | ||
Abstract | Written records of the quenching of steel exist as early as the first century of the European Iron Age.In Homer we find "... As when the smith an hatchet or a large axe ... plunges the hissing blade deep in cold water: whence the strength of steel ..."Archeological evidence for quenched and tempered steel exists from several centuries earlier. Tempering has been regarded as essential in order to mitigate the extreme hardness and brittleness of as-quenched steel. On the other hand the strength limit has been reached in low cost hardened martensitic and hard-drawn pearlitic steels.We propose to push the envelope making the radical move of dispensing with the tempering step and designing new multiphase, as quenched, tough, lean (low cost, resource efficient) steel (MATLeS). The key is to exploit recently acquired understanding of the plasticity of body centered cubic metals; work hardening; and interplay between dissolved carbon, dislocations and metal carbonitrides. This will be put together with novel state-of-the-art experimental techniques: in particular precession electron microscopy and tensile stress relaxation. In powerful combination these will furnish us with the means to manipulate and exploit the hierarchical lath martensite microstructure (HiLaMM). The new steels we design will have excellent green credentials: resource efficiency, recyclability, high strength-to-weight ratio. Our vision is toward the electric vehicle economy, light-weighting of structural offshore wind farm components and super-strong cables for undersea and civil engineering projects. Making full-circle, our outcomes will inform modern theories in materials science, advancing solutions to one of the world's outstanding scientific questions: what is the nature of work hardening? (Why can I not straighten the poker you have just bent?) | |
Data | No related datasets |
|
Projects | No related projects |
|
Publications | No related publications |
|
Added to Database | 08/11/21 |