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Abstract:
This deliverable describes the results associated with a linear and weakly nonlinear potential flow, hydrodynamic 

formulation, applied to an isolated truncated cylinder (point absorber device type) free to move in all degrees of 

freedom (DOFs). Plus to four cylinders arranged in a square (2x2) array. The review presented in this document is 

mostly focused on the methods available in WAMIT, which was used in this study to compute the first and second-

order hydrodynamic forces and the unrestrained motions associated with a single cylinder and an array with four 

cylinders in regular and irregular waves. 

Context:
The Performance Assessment of Wave and Tidal Array Systems (PerAWaT) project, launched in October 2009 

with £8m of ETI investment. The project delivered validated, commercial software tools capable of significantly 

reducing the levels of uncertainty associated with predicting the energy yield of major wave and tidal stream energy 

arrays.  It also produced information that will help reduce commercial risk of future large scale wave and tidal array 

developments.
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maximum extent permitted by law. The Energy Technologies Institute is not liable for any errors or omissions in the Information and shall not 
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EXECUTIVE SUMMARY 

The present report (WG1 WP1 D8) describes the results associated with a linear and weakly nonlinear 
potential flow hydrodynamic formulation applied to an isolated  truncated cylinder free to move in all 
degrees of freedom (DOFs) and to four cylinders arranged in a square (2x2) array.  

The main aim of this study is to quantify the relative importance of weakly nonlinear hydrodynamic 
effects associated with these floating structures which might occur for steeper incident waves and/or 
when the cylinders undergo large motions, for which the linear hydrodynamic formulation might 
provide an insufficient description. 

The report is organised in eight sections which give a detailed overview of: 

• The scope of the documents and its key objectives – Section 1; 

• A brief introduction to potential flow theory and the difficulties associated with a fully non-
linear implementation – Section 2; 

• A brief description of first order hydrodynamic formulations – Section 3; 

• A detailed description of the second-order (weakly) nonlinear hydrodynamic formulation – 
Section 4; 

• The stochastic approach used to obtain irregular wave results - Section 5. 

• The linear and weakly non-linear hydrodynamic results associated with a single truncated 
cylinder WEC free to move in all DOFs - Section 6; 

• An extension of the linear and weakly nonlinear results to an array with four cylinders 
WEC free to move in all DOFs - Section 7; 

• The next steps in terms of the implementation – Section 8. 

The report starts by providing an overview of potential flow theory by describing the assumptions and 
difficulties associated with a mathematical fully non-linear formulation (Section 2).  

All potential flow theories consider the fluid to be incompressible, inviscid and with no surface 
tension. The condition of irrotational flow allows the use of the Laplace equation, that should be 
satisfied in all fluid domain and a set of boundary conditions must also be satisfied at the fluid-air (i.e. 
free-surface) and fluid-solid (i.e. seabed and wet surface of the body) interfaces. The major difficulty 
associated with the complete (fully nonlinear) solution of the problem is associated with the nonlinear 
free-surface boundary condition which is mathematically difficult to solve and the instantaneous 
continuous change of the wetted profile due to the large motions requiring the generation and solution 
of a new system of equations at each time step, since the free-surface changes and the body surface 
moves to a new position. 

The fully nonlinear approach is thus difficult and computationally intensive and as such a more 
common approach is to solve the hydrodynamic problem using approximations to the fully nonlinear 
equations i.e. first-order (or linear) and second-order (or weakly nonlinear) by assuming small 
amplitudes for the incident waves and small motions for the floating structure.  

The linear approximation of the potential flow problem is described in Section 3, whereas the second-
order approximation is described in detail in Section 4. The linear hydrodynamic problem is widely 
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known and well understood in the context applied to WECs (see Sections 3.2 and 3.3 of WG1 WP1 
D1b) (Falnes 2002, Evans and Linton 1993, Evans 1981). However, this is not the case for the second-
order formulation for which very few studies are applied to WECs.  

The general solution of the second-order hydrodynamic problem takes into account weakly non-linear 
interactions between the fluid and the floating structure. The magnitude of these interactions is 
normally of second-order and occurs at frequencies away from that of the ambient waves and which 
result from dual combinations of all components in the incident wave group. The second order 
excitation forces are thus expressed as a function at the sum and difference frequency of the 
components of the incident wave group through the quadratic force transfer functions known as QTFs. 
As in the linear case, these QTFs depend on the wetted profile of the floating structure and are 
investigated in detail for the single truncated cylinder and for the square array. 

The review presented in this document is mostly focused on the methods available in WAMIT, which 
was used in this study to compute the first and second-order hydrodynamic forces and the unrestrained 
motions associated with a single cylinder and an array with four cylinders in regular and irregular 
waves. These are no foreseeable differences between the use of this particular software package and 
other equivalents packages, i.e. the methodology and key findings in this report should be considered 
representative of a generic second-order solution.  

The results found show that for the single truncated cylinder the second-order excitation force 
components associated with most regular waves are much smaller than the first-order excitation force 
component in surge and pitch. In heave and for wave periods close to resonance a peak in the second-
order components is found. Away from resonance, the unrestrained motions are small and dominated 
by the first-order component for all modes of motion.  

The excitation forces and unrestrained motions were computed for a Pierson-Moskowitz spectrum 
with significant wave height of 2.5m (and Tp=7.9s) and it was found that the first-order component of 
the excitation force is dominant for both surge and pitch modes. In heave, the second-order component 
has higher values with a significant contribution made to the total excitation force. The unrestrained 
motions were small with the first-order component being dominant for heave and pitch. In surge, the 
slowly varying drift motion was observed. 

For the array with four cylinders an increase of the peak values associated with the sum-frequency 
force quadratic transfer functions (QTF) component was found mostly due to the array interactions. A 
sharp increase in the value of the absolute value of the sum-frequency force QTF was obtained for 
wave periods close to 7.5s for all modes of motion except heave. An increase in the second-order 
excitation force component in surge and heave for the front cylinder (1) in the array was found in 
comparison with isolated cylinder. The unrestrained motions of the cylinders in the array are 
dominated by the 1st order component, except for surge and sway where the slowly varying drift 
motion associated with the difference frequency component is observed. 
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1 INTRODUCTION 
1.1 Scope of this document 

This document describes the implementation of a weakly, second-order nonlinear model of floating 
wave energy converters (WECs) of the point-absorber type that allows a first assessment of the 
influence of nonlinear wave loads on the WEC response. 

The document is divided in seven main sections. An overview of potential flow hydrodynamic theory 
is given in Section 2. The methodologies associated with the first and second-order formulations are 
given in Sections 3 and 4, and the stochastic approach used to obtain irregular wave results is detailed 
in Section 5. The report is concluded with the comparisons between the first and second-order 
simulations for a single WEC (Section 6), and an array of four WECs (Section 7). 

Section 2 provides a brief introduction to potential flow theory and describes the assumptions and 
difficulties associated with the mathematical formulation. The fluid is considered as incompressible, 
inviscid and with no surface tension. The condition of irrotational flow allows the use of the Laplace 
equation, that should be satisfied in all fluid domain. A set of boundary conditions must also be 
satisfied at the fluid-air (i.e. free-surface) and fluid-solid (i.e. seabed and wet surface of the body) 
interfaces. A major difficulty associated with the complete (fully nonlinear) solution of the problem is 
associated with the nonlinear free-surface boundary condition which is mathematically difficult to 
solve. The hydrodynamic forces and moments are obtained through the integration of the pressure 
exerted by the fluid on the wetted profile of the floating structure, which is in turn derived from the 
velocity potential of the fluid via the Bernoulli equation. The dynamic equations of motion of the 
floating structure are obtained by equating the inertial forces to the applied forces which include the 
hydrodynamic forces, PTO force and mooring forces. However in the fully nonlinear case the 
hydrodynamic forces are accounted over the instantaneous wetted profile which is coupled to the 
motion of the floating structure. Most of methods developed to solve this complete set of nonlinear 
equations use a Mixed Eulerian-Lagrangian (MEL) time stepping technique for which the fully 
nonlinear boundary conditions are satisfied over the instantaneous free-surface and body surfaces. The 
unknowns of the linear equations which result from the discretisation of the geometry are distributed 
on the boundary of the whole computational domain and a new system of equations is generated and 
solved at each time step, since the free-surface changes and the body surface moves to a new position. 

The fully nonlinear approach is thus difficult and computationally intensive and as such a more 
common approach is to solve the hydrodynamic problem taking into account approximations of the 
nonlinear equations to a first-order (or linear) and second-order (or weakly nonlinear) assuming small 
amplitudes for the incident waves and small motions for the floating structure.  

The linear approximation of the potential flow problem is described in Section 3, whereas the second-
order approximation is described in detail in Section 4. The linear hydrodynamic problem is widely 
known and well understood in the context applied to WECs (see Sections 3.2 and 3.3 of WG1 WP1 
D1b) (Falnes 2002, Evans and Linton 1993, Evans 1981). However, this is not the case for the second-
order formulation which is mostly applied to other offshore structures. The second-order problem 
requires a solution for the hydrodynamic interactions between the fluid and the floating structure at the 
sum and difference of the frequency of the incident waves. The magnitude of these interactions is 
normally of second-order and occurs at frequencies away from that of the ambient wave. However, as 
in the linear case, these depend on the wet surface of the floating structure and should be investigated 
in detail. Typical examples of second-order problems are sub-harmonic resonance of moored 
structures and the super-harmonic resonance of tension-leg-platforms.  
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The review presented in this document is mostly focused on the methods available in WAMIT, which 
was used in this study to compute the first and second-order hydrodynamic forces and the unrestrained 
motions associated with a single cylinder and an array with four cylinders in regular and irregular 
waves. There are no foreseeable differences between the use of this particular software package and 
other equivalents packages, i.e. the methodology and key findings in this report should be considered 
representative of generic second-order solutions.  

 

1.2 Purpose of weakly nonlinear hydrodynamic simulations 

The key objectives of this exercise are: 

• to provide a potentially more accurate solution of the hydrodynamic problem, at the expense 
of computational effort; 

• to compare such solution with other formulations, namely the first-order (linear) and fully 
nonlinear methodologies; 

• to, if proven necessary, create the baseline procedure to use nonlinear excitation forces as 
input into the software tool(s) developed under PerAWaT. 

 

1.3 Specific tasks associated with WG1 WP1 D8 

The computation of the first and second-order hydrodynamic quantities was performed using WAMIT 
(V61s). GH in-house software was then used, using the nondimensional WAMIT data, to couple the 
obtained values with six different wave inputs (three regular, three irregular).  

Further comparisons were made between the first and second-order solutions. These are directly 
relevant for WG1 WP1 D9. 

 

1.4 WG1 WP1 D8 acceptance criteria 

The acceptance criteria as listed in the Technology Contract and the sections of this report that 
demonstrate that they have been met are: 

1. Results will be calculated and presented for a second-order hydrodynamic response of single 
uncontrolled axisymmetric device in regular waves, responding in multiple degrees of 
freedom. In so far as it is possible prior to validation, findings will be discussed and 
applications and limitations of this approach will be described, including any lesson learned 
on methodology. – Section 6. 

2. Note that in preparation of the WG1 WP1 D9 activities, which follow a fully nonlinear 
hydrodynamics formulation, second-order results for an array of WECs are also presented in 
this report (exceeding the acceptance criteria).   
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2 BRIEF INTRODUCTION TO POTENTIAL FLOW HYDRODYNAMICS 

In potential flow theory the fluid is considered to be incompressible, inviscid and surface tension 
effects are neglected. The flow is irrotational and so the velocity of the fluid ( ) at a certain point 

in a Cartesian coordinate system (fixed in space) and time instant (t) is given by: 

 . (1) 

The total velocity potential ( ) satisfies the Laplace equation in all of the fluid domain: 

 , (2) 

and also the boundary conditions at the air-fluid and solid-fluid interfaces that define the problem, i.e. 
the free-surface, the seabed and the floating structure, respectively. The complete formulation of these 
boundary conditions is in general difficult to solve and first or second-order approximations are 
typically used to define the respective hydrodynamic formulation. These are also referred to in the 
literature as the linear and weakly nonlinear formulations. The first and second-order approximations 
are detailed in Sections 3 and 4, respectively.  

 

2.1 Boundary conditions 

The complete boundary conditions are in general difficult to solve due to the strong nonlinearities 
involved. At the free-surface interface two boundary conditions can be defined. One known as 
dynamic is required to ensure that the pressure is the same at the air-fluid interface. This condition is 
derived from the Bernoulli equation and is expressed mathematically as: 

 , (3) 

where g is the modulus of the acceleration of gravity. 

The other boundary condition, known as the kinematic condition expresses that the particles at the 
water-air interface stay within this boundary. Representing the wave elevation by η, this boundary 
condition can be expressed mathematically as: 

 (on x3=0). (4) 

The above Equations (3) and (4) can be combined into a single expression for the free-surface 
boundary condition which is given by: 

 (on x3=0). (5) 

At all solid boundaries, the normal velocities of the fluid and solid are required to be the same. For 
bodies in motion this condition is given by: 

 , (6) 
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where is the normal to the body surface.  

On fixed structures, at the seabed or walls, the velocity is zero ( ) and an impermeability 
condition applies: 

 (7) 

To ensure that at distances far away from the fluid domain (i.e. at infinity) the waves are outgoing with 
a proper amplitude behaviour, a far-field radiation condition (Sommerfeld) is imposed such that: 

 (8) 

in which and k the wavenumber. 

A time-domain simulation would also require the definition of initial conditions. These normally 
assume that that the body is at rest and velocity potential is null prior to the simulation time (t<0).  

 

2.2 Hydrodynamic forces 

The hydrodynamic forces and moments which result from the interaction of the fluid with a floating 
structure are obtained through the integration of the fluid pressure (p) over the instantaneous wetted 
profile of the structure as: 

 , (9) 

 

. (10) 

The fluid pressure in these integrals is obtained in terms of velocity potential through the Bernoulli 
equation: 

 . (11) 

The integration in Equations (9) and (10) is over the instantaneous wetted profile which changes as the 
structure moves in the fluid. The coupling between the body motion and the instantaneous change of 
the wetted profile carry mathematical difficulties which are difficult to solve. 

The first and second-order approaches overcome this difficulty by approximating the above integrals 
to an integral over the mean wetted profile of the floating structure at the respective order. The main 
differences between these approaches are described in Sections 3 and 4 respectively. 
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2.3 Equations of motion 

To conclude this brief introduction to potential flow hydrodynamics, the kinematic equations 
associated with the motion of a rigid body immersed in a fluid are presented.  

A global coordinate system (GCS) located in an inertial Cartesian frame of reference is defined and 
assumed to be right-handed with the third component pointing upwards and its origin located at the 
mean water free-surface. 

A second coordinate system which moves with the body and has its axis coincident with the GCS 
when the body is in an undisturbed position is referred to as the Body Fixed Coordinate System 
(BCS). 

To distinguish between the quantities represented in the inertial frame of reference from those in the 
body-fixed coordinate system (BCS) a tilde is associated with the latter (see Figure 1). 

Figure 1: Global and body-fixed coordinate systems 

 

The position vectors in the GCS and BCS are related by the linear transformation: 

 , (12) 

with: 

 . (13) 

The vectors and in Equations (12) and (13) represent the 
translational and rotational displacements of the BCS relatively to the GCS. This is equivalent to say 
that these vectors represent the surge, sway, heave, roll, pitch and yaw motions, respectively. 

The velocity associated with a generic point (P) in the inertial frame of reference is given by: 

 , (14) 
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where is the velocity of the origin of the BCS, its angular velocity and the position of 
the same point P described in the body fixed coordinate system. The acceleration is given by: 

 . (15) 

For a single rigid body the equations of motion can be conveniently expressed in a Newton-Euler 
formulation as a system of six equations in which three describe the translations and three describe the 
rotations. This approach retains the physical meaning of each term in the equations, which in an 
inertial frame of reference can be related to: 

 ; (16) 

 

. (17) 

 

In an inertial frame of reference, the variation of linear momentum ( ) is proportional to the 
acceleration of the centre of mass ( ) and equal to the external forces applied to the system ( ). The 
variation of the angular momentum ( ) relative to any pivot point is equal to the external applied 
torque ( ) about the same point. In this approach, the constraint forces must be included in the 
equations of motion and are obtained as part of the solution. 

The angular momentum in the body coordinate system can be written as: and Equation (17) 
can be rewritten as: 

 . (18) 

In the present study the only applied forces and moment considered are hydrodynamic and so 
and Also only unrestrained motions are considered and so there are applied force to such as 
the power take-off (PTO) or mooring force to take into account. 

The major difficulty associated with a fully nonlinear potential flow formulation is related to the 
solution of the nonlinear free-surface boundary conditions which has to be satisfied over the 
instantaneous free-surface which is unknown a priori. Most of methods developed use a Mixed 
Eulerian-Lagrangian (MEL) time stepping technique for which the fully nonlinear boundary 
conditions are satisfied over the instantaneous free-surface and body surfaces. The unknowns of the 
linear equations which result from the discretisation of the geometry are distributed on the boundary of 
the entire computational domain and a new system of equations is generated and solved at each time 
step, since the free-surface change and the body surface move to new positions. An advantage of 
second-order method described in Section 4 when compared with the fully nonlinear formulation is 
that through the approximations involved (and at the potential expense of accuracy) the linear system 
of equations to solve remains the same throughout the simulations (reducing the computational 
burden). 

 



Document No.: 104327/BR/04 WG1 WP1 D8 Weakly Nonlinear Hydrodynamics of 
Freely Floating WECs 

Issue:  1.0 FINAL 

Garrad Hassan & 
Partners Ltd 

9
Not to be disclosed other than in line with the terms of the technology contract 

3 FIRST-ORDER APPROXIMATION  

Linear potential flow theory is used in a variety of offshore engineering problems. This section gives a 
very brief overview of its fundamental aspects. For more detailed descriptions, see e.g. Newman 
(1977), Sarpkaya and Isacson (1989), Faltisen (1990) and Falnes (2002). 

This theory considers, in addition to the potential flow assumptions described in Section 2, that the 
amplitudes of both the incident waves and of the motions of the floating structure are small when 
compared with the incident wavelength. 

The total velocity potential is assumed to have an harmonic time dependency ( ) and 
to satisfy the Laplace equation throughout the fluid domain (as per Equation (2)). The boundary 
conditions are linearised and simplified accordingly. 

 

3.1 Boundary conditions  

In the first-order approach the inherent mathematical and numerical difficulties associated with the 
evaluation of the square of the velocities in Equations (3), (5) and (11) are avoided. 

The dynamic and kinematic boundary conditions at the free-surface interface – see Equations (3) and 
(4) – are simplified in the first-order formulation to: 

 , on x3 =0; (19) 

 , on x3 =0, (20) 

where � is the complex amplitude of the harmonic velocity potential.  

These two equations can be combined to express the free-surface boundary condition associated with 
Equation (5) which is simplified in the first-order formulation to: 

 , on x3 =0. (21) 

The kinematic boundary condition is given by Equation (6) takes into account the first-order 
approximation of the body motions and is given by: 

 . (22) 

Note that un is the normal component of the velocity at a surface element of the body which by  
assuming harmonic displacements is conveniently defined as a six dimensional generalised vector with 
components given by:  
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3.2 Hydrodynamic forces  

The hydrodynamic forces and moments are obtained through the integration of the pressure over the 
wetted profile of the body as given by Equations (9) and (10), with the pressure being given by the 
first-order approximation of the Bernoulli equation: 

 . (23) 

The second term in Equation (23) is associated with the hydrostatic forces and moments. The 
hydrostatic force is given by: 

 . (24) 

Under the first-order approximation, the integral over the instantaneous wetted profile in Equation (24) 
is approximated to a static integral over the mean wetted profile. By assuming small motions the 
integral in Equation (24) is evaluated in terms of the body-fixed coordinates and by using Stokes 
theorem converted to a volume integral. 

The instantaneous volume is then decomposed into a static volume beneath the still water plane and a 
thin layer bounded by the planes between the body-fixed and inertial coordinate systems.  

The linear hydrostatic force and moment are proportional to the displacements, represented in matrix 
form as: 

 , (25) 

where C is a matrix with the hydrostatic coefficients which are a function of water plane areas, 
moments and centres of buoyancy of the structure. 

To compute in Equation (23), and under the previously described assumptions, it is possible to 
decouple the problem and consider two distinct contributions associated with the interactions between 
the floating structure and the incoming wave field, respectively. 

These separate contributions are commonly referred to as the solutions of the diffraction and of the 
radiation problems, and correspond respectively to: 1) the study of the interactions of the incident 
waves with the body held fixed and 2) the study of the interactions due to forced motions of the body 
in calm water.  

Under the above assumption, can be given by: 

 , (26) 

where the indices I, D and R refer to the incident, diffracted and radiated velocity potentials, 
respectively. Note that the sum of the I and D components is often referred to as the excitation 
potential. 

The velocity potential ( ) due to a regular incident wave of frequency ω is computed by solving the 
Laplace equation in the absence of the structure, resulting in: 
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, (27) 

with k being the wavenumber ( ), which satisfies the dispersion relation: 

 . (28) 

The first-order approximation assumes that the motions of the floating structure are sufficiently small 
so that the radiated potential ( ) is proportionally small (Newman, 1970) and given by: 

 (29) 

The force and moment due to the radiated waves are obtained by substituting Equation (29) into the 
linearised Bernoulli equation (Equations (23)) and into the hydrodynamic pressure integral (Equations 
(9) and (10)). The radiation force is given by: 

 (30) 

The matrices A and B represent the added-mass and radiation damping coefficients (respectively) and 
these depend on the wetted profile of the body, the period of the incident wave and the water depth. 

The excitation (or scattered) potential is given by . In a first-order approximation this is 
proportional to the amplitude of the incident wave (a): 

 . (31) 

Substituting Equation (31) into Equations (23), (9) and (10), the excitation force (and moments) are 
given by: 

 (32) 

where is the complex amplitude vector of the excitation force or moment with their respective 
components: 

 (33) 

The computation of the hydrodynamic forces and moments is thus reduced to the computation of the 
velocity potential and the surface integrals in Equations (33) and (30). 
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3.3 Velocity potential  

The outline of the method used in the potential flow solver used in this study (WAMIT) to compute 
the velocity potential is detailed in e.g. Newman and Sclavounos (1988). It is based on the solution of 
integral equations computed on the wetted profile of the body by applying the Green theorem to 
source potentials defined by Green functions (G). 

These integral equations are solved for the velocity potentials of the radiation and diffraction problems 
associated with Equation (26). The velocity potential due to the radiation problem is computed by 
solving: 

 , (34) 

and the diffraction potential is obtained by solving: 

 , (35) 

in which the source potential or Green function for infinite water depth1 in the surface of the floating 
body is given by: 

 , (36) 

with:  

 ;

,

where is the position of the source of constant strength and the Bessel 
function of zero order. The irregular frequencies are removed from the velocity potential by extending 
the boundary integral equations (WAMIT2006). 

The numerical solutions of the above integral equations require the wetted profile of the floating 
structure to be discretised. A low-order method was originally developed to describe the wetted profile 
using flat panels assuming in each a constant velocity potential and velocity normal at its centre. 
Higher-order methods have since been devised that allow a continuous representation of the velocity 
potential through functions which normally are polynomials of order higher than two. WAMIT uses 
B-spline functions to represent the velocity potential as a continuous function over the wetted profile 

 
1 For finite water depth the source potential assumes a different expression as given for example by Wehausen and Laiton 
(1960). 
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of the body. These are parameterised, smooth and continuous functions defined piecewise through a 
set of control points and base polynomials which are defined recursively and represent complex curves 
in an efficient way. The higher-order method (when compared with the lower-order with a comparable 
discretisation) achieves in general a faster convergence and higher accuracy (Lee et. al. 1996, 1998). 
Previous applications of both methods to WEC modelling have been presented in Section 3.2 of WG1 
WP1 D1b. 

 

3.4 Equations of motion 

The linearisation of Equation (17) implies that and the inertia matrix is included into a mass 
matrix as explained in Newman (1977). Assuming that the only forces and moments in the system are 
the hydrodynamic components and substituting these into the equations of motion, a linear system of 
six equations is obtained, leading to: 

 (37) 

where M is the (6x6) mass matrix, A, B and C are the added mass, radiation damping and hydrostatic 
stiffness (6x6) matrices respectively; the  complex amplitude vector (6 component) of the body 
displacements; the complex amplitude of the hydrodynamic excitation forces and moments; and a
the amplitude of the incident waves. 

The ratio is the complex amplitude of motion in response to an incident wave. This quantity is a 
transfer function of the linear system and commonly known as the response amplitude operator or 
RAO. 
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4 SECOND-ORDER APPROXIMATION  

Second-order, weakly nonlinear hydrodynamic theory assumes, as in the first-order case (Section 3), 
small amplitudes for the incident waves and motions in comparison with the wavelength of the 
incident wave. However, this theory takes into account a more detailed representation of the velocity 
potential ( ) and all derived variables by considering a second-order approximation through a Taylor 
expansion series about the mean positions. 

The total velocity potential is given by a perturbation series in the parameter as: 

 (38) 

in which is a small quantity related to the wave-slope. For a regular wave this parameter is given by 
with k satisfying the dispersion relation given by .2

To generalise the second-order theory to wave-body interactions with irregular incident waves, it is 
sufficient to consider the general problem of the interaction of the structure with an arbitrary bi-
chromatic pair of incident wave components (Kim, 1990). 

In the presence of two plane incident waves with frequencies ω1 and ω2, the first-order velocity 
potential (bi-chromatic) is given by: 

 (39) 

whereas the second-order potential is written in terms of the superposition of the sum and difference 
frequency terms: 

 (40) 

where are the sum (+) and difference (-) frequency potentials at the sum and difference 
frequencies: and , respectively. The functions satisfy the 
symmetry relations: and (where the (*) refers to the complex conjugate). 

To simplify the description of the problem, Equation (40) assumes that the waves are directly incident 
upon the floating structure. If a directional spreading of the incident waves is to be considered, the 

 
2 In deep-water the maximum wave steepness achieved by a non-breaking wave is approximately equal to 

. Thus at the wave breaking limit, which is at least one order of 
magnitude higher than the hypothesis used in Equation (38). To have it is required that the wave steepness to be at 
least  .
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sum and difference velocity potential ( ) should be represented instead by a double summation 
over the wave headings .

Note that (composed of the first and second-order approximations) should satisfy the Laplace 
equation given by Equation (2) and the boundary conditions set out by Equations (5), (6), (7) and (8) 
under the second-order approximation (see Section 4.1). 

 

4.1 Boundary conditions 

The expansion in terms of Taylor series of the free-surface elevation and body motions as in Equation 
(38) allows the boundary value problem at each order to be considered independently and the velocity 
potential to be decomposed in terms of the incident ( ), diffracted ( ) and radiation ( ) potentials: 

 (41) 

The first-order problem and the methods to compute the first-order potentials were described in 
Section 3. At second-order a similar decomposition of the velocity potential is performed. The second-
order excitation potential collects all the terms associated with the second-order 
influence of the incident and diffracted waves and the forcing of all quadratic contributions of the first-
order quantities. The second-order radiation potential ( ) collects all the contributions of outgoing 
waves due to second-order motions in the absence of ambient waves or first-order disturbances. 

It should be noted that the described decomposition is not unique. It is however advantageous as all 
the ‘difficult’ second-order effects are confined to the diffraction problem whereas the second-order 
radiation problem is identical to the first-order but at the respective sum and difference frequencies. 

The knowledge of the first-order potentials is necessary to specify the forcing terms of the 
inhomogeneous free-surface (QF) and body boundary conditions (QB) associated with the second-order 
problem.  

The inhomogeneous free-surface condition for the total second-order potential is given by:  

 , (42) 

with the quadratic forcing function (QF) evaluated at the mean free-surface x3 = 0 and given by: 

 . (43) 

The body boundary condition is evaluated at the mean body boundary and is expressed by: 

 , (44) 

with the forcing function on the body boundary given by: 
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. (45) 

The matrix H in Equation (45) results from the second-order approximation of the transformation 
between the body fixed coordinate system and corresponds to:  

 , (46) 

where in the above equations and are associated with the translational and angular displacements 
between the body fixed coordinate system and the inertial coordinate system. 

 

4.2 Velocity potential 

To simplify the description the incident wave is assumed to be unidirectional and the water depth (z0)
uniform. The first-order incident potential ( ) satisfies the Laplace equation and the boundary 
conditions as described in Section 3, but is given here for a bi-chromatic wave3 at frequencies ω1 and 
ω2 while satisfying the dispersion relation:  

 . (47) 

The second-order incident potential ( ) satisfies the Laplace equation ( ), the non-porous 

bottom condition at the seabed ( ) and the nonlinear free-surface condition given 

by Equation (42). 

The sum and difference frequency second-order incident wave potentials and are obtained by 
taking into account Equation (40) and substituting Equations (39) and (47) into Equation (42), 
resulting in: 

 , (48) 

 

3 Note that in the limit of a single regular wave , and the bi-chromatic wave reduces to the 
second-order uniform stokes wave.  
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, (49) 

with satisfying the dispersion  relation and the 
functions given by: 

 ; (50) 

 

. (51) 

The forcing functions QF and QB given by Equations (43) and (45) are then described in terms of the 
sum and difference frequencies by (see Lee, 1995): 

 ; (52) 

 

; (53) 

and: 

 ; (54) 

 

; (55) 

with: 

 ; (56) 

 

. (57) 
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Note that in the above expressions the symmetry relations and apply. 

In Equations (54) and (55) the sum and difference components of the last term of Equation (45) were 
omitted since they are not a quadratic function of the first-order solution. These are proportional to the 
second-order motions and can be treated separately from the rest of body forcing. 

The second-order potential ( ) in Equations (42) and (44) is decomposed into three components in 
the sum and difference frequencies associated with the incident, diffracted and radiation as: 

 . (58) 

The radiation potential describes the disturbance associated with the second-order motions of the 
floating structure. Assuming an incident wave with small amplitude, at second-order the motions are 
proportionally small and the radiation potential in the sum and difference frequencies is given by: 

 . (59) 

4.3 Scattering potential: boundary-integral equation for the sum and difference frequency 
second-order potentials 

Panel methods can be used to solve the second-order velocity potential. The integral equation method 
is extended to second-order and includes the forcing terms ( and ) given as first-order 
quantities:  

 (60) 

The excitation (or scattering) potential ( ) is obtained as a solution of the Green integral equation 
and the same equation with 2π substituted by 4π gives the solution for ( ) in the fluid domain.  

The left-hand side of Equation (60) is identical to the integral equation for the first-order potential and 
is solved with the methods developed for the computation of the first-order velocity potential.  

The forcing terms in Equation (60) which corresponds to the right-hand side integrals are calculated in 
a piecewise manner by using flat panels as in the low-order method. 

The first integral of the right hand-side of Equation (60) is evaluated over the wetted profile of the 
body (SB) by numerical methods described in detail in Lee (1991; 1993). The second integral of the 
right hand-side of Equation (60) is evaluated over the free-surface which is discretised into 
quadrilateral flat panels and evaluated separately into two separate domains. A partition circle (of 
radius ) is defined such to enclose the body and its local disturbance and that the effect of the 
evanescent waves outside the circle can be neglected. To reduce the computational burden, the inner 
region is further subdivided into two or more parts separated with a circle of radius 

which is large enough to enclose the body surface. For the region close to the 
body ( ), the integration is carried out by numerical quadratures at each panel centre whereas in 
the annular region between and away from the body a more efficient procedure 
integration is used (Gauss-Chebychev quadrature in the azimuthal direction and Gauss-Legendre 
quadrature in the radial direction). 
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4.4 Hydrodynamic forces 

At second-order, the fluid pressure given by the Bernoulli Equation (11) is fully taken into account. 

However, the hydrodynamic forces and moments - Equations (9) and (10) - which result from the 
integration of the pressure over the instantaneous wet surface are approximated to second-order and 
the integral is taken instead over the mean wetted profile SB.

By collecting the first and second-order quantities at each order, the second-order forces or moments 
due to the second-order incident and diffracted wave potential are given respectively by: 

 (61) 

and: 

 (62) 

The sum of these two quantities is defined as the second-order potential force and moment: 

 (63) 

 
The components of the hydrodynamic forces and moments associated to the quadractic products of 
first-order quantities are known as the quadratic second-order forces and moments. These are given 
by: 

 , (64) 

and: 

 (65) 
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In the above equations the first-order relative wave height is defined as 
and vector . The water plane area is Aw and the water plane moments are given 
by: . The second-order wave excitation force and moments are defined as the 
sum of the second-order potential force and moments with the quadratic second-order force and 
moments: 

 (66) 

 

In the presence of bi-chromatic waves the second-order wave excitation force can be expressed at the 
sum and difference frequencies by (Kim, 1990): 

 , (67) 

where: are the complete sum- and difference-frequency excitation force also known 
as quadratic transfer function (or QTF’s) at the sum- and difference-frequencies, and 

respectively. 

The second-order force and moments related to the radiation potential are given by: 

 . (68) 

In addition, the second-order radiation potential can be expressed in terms of the sum and difference 
frequencies as: 

 (69) 

Assuming a small incident wave and proportionally small motions at second-order as in Equation (59), 
this is further reduced to

 
. After substituting into Equation (69), the second-

order radiation potential can be given by: 

 (70) 

The second-order radiation force is thus obtained by substituting Equation (70) into (68): 

 (71) 
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Equation (71) can be further expanded, resulting in: 

 (72) 

with: 

 (73) 

which leads to: 

 (74) 

 
Finally, the second-order hydrostatic force and moment can be given by: 

 (75) 

 (76) 

In the next section the approach towards the modelling of scenarios involving irregular waves as input 
is described, for both the linear and nonlinear approximations. 
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5 STOCHASTIC APPROACH: IRREGULAR WAVES 

Having defined the first (Section 3) and second-order (Section 4) approximations, it is necessary to 
consider the case where the input wave filed is of an irregular nature to study the response of floating 
structures under more realistic input conditions. Following the superposition principle, the free-surface 
elevation can be represented in terms of a stochastic process as a sum of N regular wave components: 

 (77) 

with , where is the amplitude of the jth component wave, given by 
, with the one-side wave amplitude spectra, and its random phase is 

uniformly distributed in the interval .

By representing the input wave spectrum with N components, the time-series of the first-order 
excitation force can be given by: 

 (78) 

where is the complex amplitude of the first-order excitation force associated with the jth wave 
component.  

Comparisons between the linear and the nonlinear formulation can focus the excitation force under 
irregular waves as a benchmark (see Section 6). The time-series of the second-order excitation force 
are directly calculated from the input wave spectrum and the second-order sum and difference 
frequency force quadratic transfer function (QTF): 

 (79) 

where the sum and difference-frequency force QTF satisfy the symmetry relations: and 
.

The one-sided spectra of the sum and difference frequency forces are obtained as:  

 (80) 

 (81) 

The influence of the first and the second-order excitation force in the overall response of the floating 
bodies is accessed in Section 6 for the geometries under study. Results are further extended to arrays 
in Section 7. 
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6 HYDRODYNAMIC FORCES AND UNCONSTRAINED MOTIONS 
ASSOCIATED WITH A SINGLE TRUNCATED CYLINDER 

This section presents the results associated with the computation of first and second-order 
hydrodynamic quantities for a single, freely floating truncated cylinder with diameter and draft equal 
to 20m. The water depth considered in this exercise is equal to 80m. Table 1 lists other main properties 
associated with this cylinder. 

The hydrodynamic quantities computed in this exercise are: 
 

• The first and second-order excitation forces;  
• The first and second-order response amplitude operators (RAOs) for unconstrained motions. 

The responses associated with these quantities are computed for a total of 45 different regular waves 
with different periods and the steady state time series responses are evaluated for 4 different values of 
wave steepness in Section 6.2.1. 

The steady state responses associated with a unidirectional Pierson-Moskowitz (PM) spectrum with 
significant wave height of 2.5m (and Tp=7.9s) described by 16  and 8 frequency components are 
presented in Section 6.2.2.  

The absolute value associated with the sum and difference frequency force QTFs are shown in terms 
of contour plots to show the levels associated with the second-order interactions and for which wave 
periods are more important. 

For an axi-symmetric device the problem is simplified and the only modes that are relevant for head 
on waves are, surge, heave and pitch.  
 

Main properties of the cylinder. 
Diameter: 20 m 
Draft: 20 m 
Volume of displaced water 6.28x103 m3

Mass  6.44x106 kg 
Position of the centre of mass (in the global CS) (xCM)1 = 0.0 m 

(xCM)2 = 0.0 m 
(xCM)3 =-14.59 m 

Inertia matrix  I11 = 2.38x108 kg m2

I22 = 2.38x108 kg m2

I33 = 1.82x108 kg m2

Water depth  80 m. 

Table 1: Main geometric properties associated with the cylinder. 
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6.1 Convergence tests: general notes 

Prior to the evaluation of any hydrodynamic quantity the degree of accuracy of the numerical solution 
should be assessed to ascertain the influence of the discretisation of the geometry. 

A finer discretisation may represent more accurately the geometry and therefore evaluate more 
accurately the velocity potential. However the computational effort increases with finer discretisation 
and so this convergence exercise is required to define the right balance between the required accuracy 
and computational effort. 

There are not many studies related to convergence studies of second-order quantities computed with 
WAMIT. Birknes (2001) used this software to evaluate the wave elevation around four bottom 
mounted cylinders and four truncated cylinders at a spacing equal to 2D, with D being the cylinder’s 
diameter. The study showed that the convergence is rapidly achieved for the first-order and the 
difference-frequencies second-order wave elevation. The main problems in the convergence were 
found for the sum-frequency component. The study also showed that the convergence was easier to 
achieve for long waves and some rules of thumb were defined to give general recommendations on the 
discretisation of the geometry of the floating bodies such to achieve better convergence results: 

1) There should be at least 11 panels per second-order wavelength due to sum-frequencies (44 
panels per linear wavelength). 

2) Near the cylinders the free-surface should be discretised with a structured and dense mesh. 

3) The width of the panels on the free-surface must not be too small compared with the length of 
the panels (aspect ratio ~0.5). For the panels which border on the cylinders, the longest side of 
the panel should border on the cylinder. 

4) The cylinders should be discretised with small panels near the free-surface. 

It should be also noted that the quadratic component of the second-order excitation force and moment 
given by Equations (64) and (65), depends on the products of first-order quantities and thus the 
accuracy of the second-order solution is dependent on the first-order results. 

To evaluate the convergence of the first-order solution, the methodology presented by Roache (1997) 
which applies standard convergence procedures based on Richardson extrapolation method to 
computations performed with WAMIT higher order method is followed. 

The exact value of a certain quantity ( ) is estimated by evaluating its value at three different 
discretisations of the geometry ( ). The error associated with the finer discretisations is given by: 

 (82) 

where are the values of the quantity being evaluated and hi is the grid cell size associated with the 
discretisation i. The subscript 1 refers to a finer discretisation than 2 and 3 to a coarser discretisation 
than 1.  

The order of convergence (p) is a quantity which depends on the implementation of the code itself and 
in general is not known. The value for this quantity is straightforward to compute for a constant 
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refinement ratio, i.e. h3/h2 = h2/h1= r = const. Assuming also that the asymptotic range has been 
reached, p is given by: 

 . (83) 

The results of the convergence in the present study are evaluated through the error norm defined by: 

. (84) 

The grid convergence ratio (R) is a useful quantity to identify the behaviour of the convergence. This 
quantity defined by: 

, (85) 

and the solution is classified in terms of the value of R as: 

• Oscillatory divergence, if  R < -1; 

• Oscillatory convergence, if  -1 < R < 0;

• Monotonic convergence, if 0 < R < 1;

• Monotonic divergence, if R >1.

Finally, the uncertainty (Uk) associated with the computations finer discretisation ( ) is given by: 

 (86) 

where Fs is a safety factor which may vary between 1 and 3. In the present study a conservative 
approach was taken and Fs = 3.

Figure 2: Representation of one quarter of the free-surface divided into the different integration 
regions. (A) Floating structure, (B) inner region, (C) annular region, (D) outer region.  












































































































