



Programme Area: Energy Storage and Distribution

Project: Storage and Flexibility Modelling Project

Title: Energy Storage Mapping Report

#### Abstract:

The report provides an assessment of the services that storage (heat, hydrogen, electricity and gas) could provide and an assessment of the related technologies.

### Context:

This project will develop energy system modelling capability to increase understanding of the role of energy storage and system flexibility in the future energy system. The modelling capability will provide a whole systems view of the different services that could be provided and at which points in the energy system they are most appropriate. Management consultancy Baringa Partners are delivering this new project to develop the capability to improve understanding with regards the future role of energy storage and the provision of cross-vector system flexibility within the context of the overall UK energy system.

Disclaimer: The Energy Technologies Institute is making this document available to use under the Energy Technologies Institute Open Licence for Materials. Please refer to the Energy Technologies Institute website for the terms and conditions of this licence. The Information is licensed 'as is' and the Energy Technologies Institute excludes all representations, warranties, obligations and liabilities in relation to the Information to the maximum extent permitted by law. The Energy Technologies Institute is not liable for any errors or omissions in the Information and shall not be liable for any loss, injury or damage of any kind caused by its use. This exclusion of liability includes, but is not limited to, any direct, indirect, special, incidental, consequential, punitive, or exemplary damages in each case such as loss of revenue, data, anticipated profits, and lost business. The Energy Technologies Institute does not guarantee the continued supply of the Information. Notwithstanding any statement to the contrary contained on the face of this document, the Energy Technologies Institute confirms that the authors of the document have consented to its publication by the Energy Technologies Institute.



# D1.1 Energy Storage Mapping Report

- **CLIENT:** Energy Technologies Institute
- **DATE:** 19/08/2016

www.baringa.com





| Version Date |            | Description                      | Prepared by | Approved by |  |  |  |
|--------------|------------|----------------------------------|-------------|-------------|--|--|--|
| V1_0         | 27/06/2016 | Draft Final                      | LH, JG, AB  | OR          |  |  |  |
| V2_0         | 19/08/2016 | Final incorporating ETI comments | JG, AB      | OR          |  |  |  |
| V3_0         | 15/08/2017 | Minor edits for publication      | LH          | LH          |  |  |  |

#### Contact

Varcian History

Name (Luke.Humphry@baringa.com +44 203 327 4279) Name (James.Greenleaf@baringa.com +44 203 327 4275)

#### Copyright

Copyright © Baringa Partners LLP 2016. All rights reserved. This document is subject to contract and contains confidential and proprietary information.

No part of this document may be reproduced without the prior written permission of Baringa Partners LLP.

#### **Confidentiality and Limitation Statement**

This document: (a) is proprietary and confidential to Baringa Partners LLP ("Baringa") and should not be disclosed to third parties without Baringa's consent; (b) is subject to contract and shall not form part of any contract nor constitute an offer capable of acceptance or an acceptance; (c) excludes all conditions and warranties whether express or implied by statute, law or otherwise; (d) places no responsibility on Baringa for any inaccuracy or error herein as a result of following instructions and information provided by the requesting party; (e) places no responsibility for accuracy and completeness on Baringa for any comments on, or opinions regarding, the functional and technical capabilities of any software or other products mentioned where based on information provided by the product vendors; and (f) may be withdrawn by Baringa within the timeframe specified by the requesting party and if none upon written notice. Where specific Baringa clients are mentioned by name, please do not contact them without our prior written approval.

| D1.1 Energy Storage Mapping Report



#### Contents

| 1 | Intr   | oduction                                      | . 7 |
|---|--------|-----------------------------------------------|-----|
|   | 1.1    | Background7                                   |     |
|   | 1.2    | Purpose of this report7                       |     |
|   | 1.3    | Structure of this report7                     |     |
| 2 | Flex   | ibility Services                              | . 8 |
|   | 2.1    | List of possible required services            |     |
|   | 2.2    | Separating system benefits and requirements13 |     |
|   | 2.3    | Defining system benefits15                    |     |
|   | 2.4    | Defining system technical requirements16      |     |
|   | 2.5    | Define mutual exclusivities                   |     |
| 3 | Stor   | rage and competing technologies               | 22  |
|   | 3.1    | Overview                                      |     |
|   | 3.2    | Storage technologies                          |     |
|   | 3.3    | Competing flexible technologies               |     |
| 4 | Tec    | hnology Mapping                               | 28  |
|   | 4.1    | Technology to requirements map                |     |
|   | 4.2    | Technology to location map                    |     |
| 5 |        | erences                                       |     |
| Α | ppendi | x A System requirement details                | 36  |
|   | A.1    | Electricity                                   |     |
|   | A.2    | Gas and hydrogen 39                           |     |
|   | A.3    | Heat                                          |     |
| Α | ppendi | x B Storage technologies details              | 41  |
|   | B.1    | Electricity                                   |     |
|   | B.2    | Gas and hydrogen                              |     |
|   | B.3    | Heat                                          |     |
| A | ppendi |                                               | 65  |
|   | C.1    | Electricity                                   |     |
|   | C.2    | Gas and hydrogen72                            |     |
|   | C.3    | Heat76                                        |     |



### **Figures**

| Figure 1 | Modelling characterisation of system benefits versus technical requirements         | 14 |
|----------|-------------------------------------------------------------------------------------|----|
| Figure 2 | Illustrative overview of electricity storage by discharge time/duration and power 2 | 24 |

### Tables

| Table 1  | List of Acronyms                                         |
|----------|----------------------------------------------------------|
| Table 2  | List of possible required flexibility services9          |
| Table 3  | Description of possible required flexibility services    |
| Table 4  | Definition of System Technical Requirements and Benefits |
| Table 5  | Services mapped to System Benefits and Requirements15    |
| Table 6  | System Benefits 16                                       |
| Table 7  | Parameters for defining system requirements 17           |
| Table 8  | Summary of System Requirement technical characteristics  |
| Table 9  | Electricity flexibility service mutual exclusivities     |
| Table 10 | Heat flexibility service mutual exclusivities            |
| Table 11 | Gas flexibility service mutual exclusivities             |
| Table 12 | Hydrogen flexibility service mutual exclusivities        |
| Table 13 | Parameters for defining storage technologies 23          |
| Table 14 | Summary of storage technology parameters                 |
| Table 15 | Parameters for defining competing flexible technologies  |
| Table 16 | Summary of competing flexible technology parameters      |
| Table 17 | Electricity technology -> requirements map 29            |
| Table 18 | Storage technology -> network location map               |
| Table 19 | Competing flexible technology -> network location map    |
| Table 20 | Electricity RoCoF control                                |
| Table 21 | Electricity Frequency Containment                        |
| Table 22 | Electricity Frequency Replacement                        |
| Table 23 | Electricity Reserve Replacement                          |
| Table 24 | Electricity Voltage Support                              |
| Table 25 | Electricity Black Start                                  |
| Table 26 | Gas Pressure Regulation 39                               |
| Table 27 | Gas (and hydrogen) Operating Margins                     |
| Table 28 | Hydrogen Pressure Regulation 40                          |
| Table 29 | Heat Emergency Backup 40                                 |
| Table 30 | Pumped hydro details 41                                  |
| Table 31 | CAES details                                             |
| Table 32 | Flywheel details                                         |
| Table 33 | NaS Battery details                                      |
| Table 34 | Flow battery storage details                             |
| Table 35 | Advanced Lead-acid storage details 46                    |
| Table 36 | Li-ion Battery details                                   |
| Table 37 | Home battery storage (Li-ion) details                    |
| Table 38 | Super capacitor details 49                               |

<sup>|</sup> D1.1 Energy Storage Mapping Report

Baringa Partners LLP is a Limited Liability Partnership registered in England and Wales with registration number OC303471 and with registered offices at 3rd Floor, Dominican Court, 17 Hatfields, London SE18DJ UK.

# 🛠 Baringa

| Table 39 | Superconductive magnetic energy storage details             | 50 |
|----------|-------------------------------------------------------------|----|
| Table 40 | Liquid air energy storage details                           | 51 |
| Table 41 | Liquefied Natural Gas (LNG)                                 | 52 |
| Table 42 | Long Range Storage (LRS)                                    | 53 |
| Table 43 | Short Range Storage (SRS)                                   | 54 |
| Table 44 | Line-packing                                                | 55 |
| Table 45 | Geological hydrogen storage                                 | 56 |
| Table 46 | Bulk storage                                                | 57 |
| Table 47 | Materials-based                                             | 58 |
| Table 48 | Underground thermal energy storage                          | 59 |
| Table 49 | District heat network accumulator / buffer store            | 60 |
| Table 50 | Building scale hot water storage                            | 61 |
| Table 51 | Building scale storage heaters                              | 62 |
| Table 52 | Building scale heat storage – Phase Change Material         | 63 |
| Table 53 | Building scale heat storage – Thermochemical Energy Storage | 64 |
| Table 54 | CCGT (potentially with CCS)                                 | 65 |
| Table 55 | OCGT                                                        | 66 |
| Table 56 | Coal (potentially with CCS)                                 | 66 |
| Table 57 | New Nuclear                                                 | 67 |
| Table 58 | Diesel engine                                               | 67 |
| Table 59 | Gas engine                                                  | 68 |
| Table 60 | Biomass (potentially with CCS)                              | 68 |
| Table 61 | СНР                                                         | 69 |
| Table 62 | Hydrogen turbine                                            | 69 |
| Table 63 | Interconnector                                              | 70 |
| Table 64 | DSR (home, commercial and industrial)                       | 71 |
| Table 65 | Gas interconnectors                                         | 72 |
| Table 66 | Gas DSR                                                     | 73 |
| Table 67 | Liquefied Natural Gas (LNG) terminal                        | 74 |
| Table 68 | Direct Synthetic Natural Gas production and injection       | 74 |
| Table 69 | Bio-methane Grid Injection                                  | 75 |
| Table 70 | Direct hydrogen production and injection                    | 76 |
| Table 71 | District heat backup boiler (gas / biomass)                 |    |
| Table 72 | District heat waste heat recovery                           | 77 |
| Table 73 | Building scale heaters (gas, electricity, biomass)          | 77 |
|          |                                                             |    |

| D1.1 Energy Storage Mapping Report

# 🛠 Baringa

#### Table 1 List of Acronyms

| Acronym | Description                                                             |
|---------|-------------------------------------------------------------------------|
| AAHEDC  | Assistance for Areas with High Electricity Distribution Costs (charges) |
| BEGA    | Bilateral Embedded Generation Agreements                                |
| BM      | Balancing Mechanism                                                     |
| BMU     | Balancing Mechanism Unit                                                |
| BSC     | Balancing and Settlement Code                                           |
| BSIS    | Balancing Services Incentive Scheme                                     |
| BSUoS   | Balancing Services Use of System (charges)                              |
| CCGT    | Combined Cycle Gas Turbine                                              |
| CfD     | Contract for Difference                                                 |
| СМ      | Capacity Market                                                         |
| CMSC    | Capacity Market Supplier Charge                                         |
| CUSC    | Connection and Use of System Code                                       |
| DA      | Day Ahead                                                               |
| DG      | Distributed Generation                                                  |
| DNO     | Distribution Network Operator                                           |
| DSR     | Demand Side Response                                                    |
| DUoS    | Distribution Use of System (charges)                                    |
| ERPS    | Enhanced Reactive Power Service                                         |
| FCDM    | Frequency Control by Demand Management                                  |
| FFR     | Firm Frequency Response                                                 |
| FR      | Fast Reserve                                                            |
| ID      | Intra-Day                                                               |
| LLF     | Line Loss Factors                                                       |
| LOLE    | Loss of Load Expectation                                                |
| LRMC    | Long Run Marginal Cost                                                  |
| MBSS    | Monthly Balancing Services Summary                                      |
| NGET    | National Grid Electricity Transmission                                  |
| NIV     | Net Imbalance Volume                                                    |
| OCGT    | Open Cycle Gas Turbine                                                  |
| ORPS    | Obligatory Reactive Power Service                                       |
| ORR     | Operational Reserve Requirements                                        |
| PPA     | Power Purchase Agreement                                                |
| PS      | Pump Storage                                                            |
| RO      | Renewables Obligation                                                   |
| ROCOF   | Rate of Change of Frequency                                             |
| SBP     | System Buy Price                                                        |
| SOF     | System Operability Framework                                            |
| SRMC    | Short Run Marginal Cost                                                 |
| SSP     | System Sell Price                                                       |
| STOR    | Short Term Operating Reserve                                            |
| TNUoS   | Transmission Network Use of System (charges)                            |
| TSO     | Transmission System Operator                                            |

| D1.1 Energy Storage Mapping Report



## 1 Introduction

### 1.1 Background

The primary objective of the *Storage & Flexibility Modelling Project* is to develop the capability to improve understanding of the future role of energy storage and the provision of system flexibility within the context of the overall energy system. This aims to provide a techno-economic evaluation of energy storage across multiple energy vectors (electricity, heat, gas and hydrogen) accounting for the different services that could be provided (frequency response or avoiding wind curtailment) and at which points in energy system (transmission, distribution, building level) they are most appropriate.

Stage 1 of the project is comprised of 3 deliverables:

- D1.1 Energy storage mapping report (this report) a first principles framework for mapping the system technical services and benefits that storage (heat, hydrogen, gas and electricity) and competing flexibility options could provide
- D1.2 Assessment of the near term market potential for energy storage, over the next 5-10 years given the current market structures, with a particular focus on electricity
- D1.3 Approach for modelling long term role of energy storage which defines the modelling approach to analysing the longer term role for storage and other relevant flexibility options in GB from a system operator perspective

### **1.2** Purpose of this report

To support the development of an approach for a long-term storage modelling framework (in the separate D1.3) the purpose of this report is to define the flexible services that should be represented (both underlying technical requirements and wider system benefits) and the technologies (storage and the competing alternatives) that are capable of provide these services.

It is not intended to provide an exhaustive review of the current and likely future state of storage technologies, but to review the most promising and/or those exhibiting significantly different characteristics such that they could be categorised within a long-term modelling framework

Note that further detail on the scale and market structure that exists to deliver these services is described in the separate deliverable *D1.2* Assessment of the near term market potential for energy storage.

### **1.3** Structure of this report

The structure of the report is as follows:

- Section 2 categorises the various flexibility services
- Section 3 describes the technologies (storage and alternatives) which can provide these services
- Section 4 describes how the technology options map in terms of being able to deliver the flexibility services

<sup>|</sup> D1.1 Energy Storage Mapping Report

Baringa Partners LLP is a Limited Liability Partnership registered in England and Wales with registration number OC303471 and with registered offices at 3rd Floor, Dominican Court, 17 Hatfields, London SE1 8DJ UK



## 2 Flexibility Services

### 2.1 List of possible required services

In this section we outline the long list of potential services<sup>1</sup> that storage could provide, and describe these in terms of technical properties and a brief overview of 'market' size (further detail is provided in D1.2). Through a process of filtering we seek to define the set of potential services to include in the long term modelling framework focusing on those that are deemed to be most material.

Energy storage technologies can provide a wide range of services to an energy system, across multiple energy vectors. By "service" we refer to any use of storage that may reduce the total cost of securely meeting end user demand across an energy system. Most of these services can be characterised as "balancing" services – temporally storing energy to better match supply and demand. The challenge is that these services vary significantly over a number of dimensions:

- Energy vector (electricity, heat, gas, hydrogen)
- Network level affected (transmission, distribution, building or 'behind-the-meter')
- Timescales (from seconds to years

Baringa have conducted a detailed literature review to assess the potential services that storage could provide. The full list of services is outlined in Table 2, separated into those that are found across multiple energy vectors and those that are specific to single energy vectors. It can been seen that there are more services required for electricity when compared to the other energy vectors – this is due to the lack of native storage in the electricity network (gas, hydrogen and heat having a non-trivial level of "physical" storage in their pipes).

<sup>&</sup>lt;sup>1</sup> Note that these refer to system-related services rather than underlying consumer services such as mobility, portability, responsiveness, quality, etc.

<sup>|</sup> D1.1 Energy Storage Mapping Report

Baringa Partners LLP is a Limited Liability Partnership registered in England and Wales with registration number OC303471 and with registered offices at 3rd Floor, Dominican Court, 17 Hatfields, London SE1 8DJ UK



|                          | Electricity                                       | Heat                                       | Gas                             | Hydrogen            |  |  |  |  |
|--------------------------|---------------------------------------------------|--------------------------------------------|---------------------------------|---------------------|--|--|--|--|
|                          | Seasonal storage                                  |                                            |                                 |                     |  |  |  |  |
|                          |                                                   | Network cor                                | ngestion relief                 |                     |  |  |  |  |
| General services         |                                                   | Network infrastructure investment deferral |                                 |                     |  |  |  |  |
| eneral s                 |                                                   | Demand shifting a                          | and peak reduction <sup>2</sup> |                     |  |  |  |  |
| Ŭ                        | Variable supply resource integration              |                                            |                                 |                     |  |  |  |  |
|                          | Off                                               | -grid                                      |                                 |                     |  |  |  |  |
| ces                      | Rate of Change of<br>Frequency (RoCoF)<br>control | Waste heat utilisation                     | Pressure regulation             | Pressure regulation |  |  |  |  |
| ervi                     | Frequency containment                             | Pressure regulation                        | Operating margins               |                     |  |  |  |  |
| ific                     | Frequency replacement                             | Temperature regulation                     |                                 |                     |  |  |  |  |
| Vector specific services | Reserve replacement                               | Emergency backup                           |                                 |                     |  |  |  |  |
|                          | Voltage support                                   |                                            |                                 |                     |  |  |  |  |
| Veci                     | Black start                                       |                                            |                                 |                     |  |  |  |  |
|                          | Fault level                                       |                                            |                                 |                     |  |  |  |  |

#### Table 2 List of possible required flexibility services

In Table 3 each service is described in more detail, with an indication of where in each energy vector network the service is required. Many different classifications of these services exist in the literature, but the following sections aim to categorise them in a manner that is as far as possible MECE (Mutually Exclusive and Collectively Exhaustive) to help frame the way they are considered for the modelling framework.

#### Table 3 Description of possible required flexibility services

| Vector   | Service                         | Location in<br>network<br>(Building,<br>Distribution,<br>Transmission) | Description                                                                                                                                                                                                                                                   | Notes |
|----------|---------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Multiple | Seasonal<br>storage             | B / D / T                                                              | The ability to store energy for days,<br>weeks, or months to compensate for a<br>longer-term supply disruption or<br>seasonal variability on the supply and<br>demand sides of the energy system<br>(e.g. storing gas in the summer to use in<br>the winter). |       |
| Multiple | Network<br>congestion<br>relief | D/T                                                                    | Technologies used to temporally and/or<br>geographically shift energy supply or<br>demand in order to relieve congestion<br>points in the transmission and                                                                                                    |       |

<sup>&</sup>lt;sup>2</sup> Other studies often refer to this as arbitrage, but this is a commercial strategy facilitated by system differences that can arise from factors such as varying demand (within day or seasonally) that then lead to price differentials that can be exploited by flexible technologies such as storage.

<sup>|</sup> D1.1 Energy Storage Mapping Report



| Vector      | Service                                             | Location in<br>network<br>(Building,<br>Distribution,<br>Transmission) | Description                                                                                                                                                                                                                                                                                                                                                    | Notes                                                                                                                          |
|-------------|-----------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|             |                                                     |                                                                        | distribution (T&D) grids in the near<br>term - typically constrained by thermal<br>limits (apparent power) or voltage, or<br>e.g. pressure limits in gas/hydrogen<br>pipelines                                                                                                                                                                                 |                                                                                                                                |
| Multiple    | Network<br>infrastructure<br>investment<br>deferral | D/T                                                                    | Technologies used to temporally and/or<br>geographically shift energy supply or<br>demand in order to defer the need for<br>new investment over the longer term -<br>typically constrained by thermal limits<br>(apparent power) or voltage, or e.g.<br>pressure limits in gas/hydrogen<br>pipelines                                                           |                                                                                                                                |
| Multiple    | Demand<br>shifting and<br>peak reduction            | B / D / T                                                              | Energy demand can be shifted in order<br>to match it minimise peak demand and<br>facilitate more efficient operation of<br>the system by help to reduce supply-<br>side costs. These shifts are facilitated by<br>changing the time at which certain<br>activities take place (e.g. the heating of<br>water or space)                                          |                                                                                                                                |
| Multiple    | Off-grid                                            | В                                                                      | Off-grid energy consumers frequently<br>rely on fossil or renewable resources<br>(including variable renewables) to<br>provide heat and electricity. To ensure<br>reliable off-grid energy supplies and to<br>support increasing levels of local<br>resources use, energy storage can be<br>used to fill gaps between variable<br>supply resources and demand. | Not very applicable to GB<br>energy system with<br>respect to electricity. For<br>heat there are ~3-4M off-<br>gas grid homes. |
| Multiple    | Variable supply<br>resource<br>integration          | B / D / T                                                              | The use of energy storage to change<br>and optimise the output from variable<br>supply resources (e.g. wind, solar<br>thermal or photovoltaic), mitigating<br>rapid and seasonal output changes and<br>bridging both temporal and geographic<br>gaps between supply and demand in<br>order to increase supply quality and<br>value (e.g. avoiding spill).      |                                                                                                                                |
| Electricity | RoCoF control                                       | B/D/T                                                                  | Automatic injection and withdrawal of                                                                                                                                                                                                                                                                                                                          | This service approximately                                                                                                     |

| Electricity | RoCoF control | B/D/T        | Automatic injection and withdrawal of    | This service approximately |
|-------------|---------------|--------------|------------------------------------------|----------------------------|
|             |               | (but managed | active power in response to deviations   | maps to Enhanced           |
|             |               | by TSO)      | in frequency, especially fast deviations | Frequency Response in GB   |
|             |               |              | (i.e. high Rate of Change of Frequency,  |                            |
|             |               |              | RoCoF). Response is very fast <0.5 sec.  |                            |
| Electricity | Frequency     | B/D/T        | Injection (occasionally withdrawal) of   | "Frequency containment"    |
|             | containment   | (but managed | active power in response to              | is the term used by        |
|             |               | by TSO)      | instantaneous loss of generation or      | ENTSOE <sup>3</sup> , and  |

<sup>&</sup>lt;sup>3</sup> The ENTSOE classification of frequency containment (primary), frequency replacement (secondary), reserve replacement (tertiary) is a more comprehensive, but generic classification of electricity-related balancing

<sup>|</sup> D1.1 Energy Storage Mapping Report

Baringa Partners LLP is a Limited Liability Partnership registered in England and Wales with registration number OC303471 and with registered offices at 3rd Floor, Dominican Court, 17 Hatfields, London SE1 8DJ UK.



| Vector      | Service                         | Location in<br>network<br>(Building,<br>Distribution,<br>Transmission) | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Notes                                                                                                                                                                                                                                                             |
|-------------|---------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                 | nulloiniosion)                                                         | load, leading to high Rate of Change of<br>Frequency (RoCoF). Response is fast -<br><10 secs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | approximately maps to<br>Primary and High<br>Response in GB                                                                                                                                                                                                       |
| Electricity | Frequency<br>replacement        | B / D / T<br>(but managed<br>by TSO)                                   | Injection (occasionally withdrawal) of<br>active power in response to<br>instantaneous loss of generation or<br>load, to move frequency back to<br>operating point. Response is medium -<br><2mins                                                                                                                                                                                                                                                                                                                                                                                                                             | "Frequency replacement"<br>is the term used by<br>ENTSOE, and<br>approximately maps to<br>Secondary Response and<br>Fast Reserve in GB                                                                                                                            |
| Electricity | Reserve<br>replacement          | B / D / T<br>(but managed<br>by TSO)                                   | Longer term balancing of supply and<br>demand by increase in active power.<br>Response is slower, <15 mins - 4 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | "Reserve replacement" is<br>the term used by ENTSOE,<br>and approximately maps<br>to STOR (Short Term<br>Operating Reserve) in GB <sup>4</sup>                                                                                                                    |
| Electricity | Voltage<br>support              | D/T                                                                    | The injection or absorption of reactive<br>power to maintain voltage levels in the<br>transmission and distribution system<br>under normal conditions is referred to<br>as voltage support.                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                   |
| Electricity | Black start                     | D / T<br>(but managed<br>by TSO)                                       | In the rare situation when the power<br>system collapses and all other ancillary<br>mechanisms have failed, black start<br>capabilities allow electricity supply<br>resources to restart without pulling<br>electricity from the grid.                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                   |
| Electricity | Fault level                     | D / T                                                                  | Control equipment is used to break the<br>network when a short circuit fault<br>occurs. This assumes the (short circuit)<br>fault level will be within a certain range,<br>related to the amount of synchronous<br>generation and load on the system. At<br>distribution level networks are<br>becoming constrained by the amount of<br>synchronous distributed generation<br>(fault level too high) and at<br>transmission level networks may<br>become constrained by the lack of<br>synchronous generation in summer<br>(fault level too low). Literature review<br>suggests issue is more severe at<br>distribution level. | Storage does not<br>contribute directly to fault<br>level (as it is connected<br>through power<br>electronics). Role of<br>storage in relieving fault<br>level constraints is second<br>order – by displacing<br>synchronous generation<br>at distribution level. |
| Heat        | Flexible waste heat utilisation | B / D                                                                  | Capturing of waste heat (e.g. CHP<br>facilities, thermal power plants) and<br>matching with thermal demand (e.g. for<br>heating/cooling buildings, supplying                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                   |

services to facilitate comparison across markets; as the nomenclature and disaggregation of specific products to provide these services may vary.

industrial process heat) via buffer heat

<sup>&</sup>lt;sup>4</sup> Technically plant must be available within 240 minutes under STOR, but a strong preference in tendering process for plant with sub-20 minute dispatch times.

<sup>|</sup> D1.1 Energy Storage Mapping Report

Baringa Partners LLP is a Limited Liability Partnership registered in England and Wales with registration number OC303471 and with registered offices at 3rd Floor, Dominican Court, 17 Hatfields, London SE1 8DJ UK.



| Vector | Service                   | Location in<br>network<br>(Building,<br>Distribution,<br>Transmission) | Description                                                                                                                                                        | Notes                                                                                                                                                                                                                                   |
|--------|---------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                           |                                                                        | storage to maximise flexible operation of CHP plant                                                                                                                |                                                                                                                                                                                                                                         |
| Heat   | Pressure<br>regulation    | D                                                                      | The ability to inject or withdraw water<br>to keep the pressure at the required<br>level. Needed when there is an<br>imbalance between supply and<br>demand.       | Literature review suggests<br>this is not an explicitly<br>managed, real-time<br>operating constraint for<br>district heat networks,<br>and is dealt with through<br>the initial design and<br>broader energy balance<br>when operating |
| Heat   | Temperature<br>regulation | D                                                                      | The ability to maintain operation of the<br>network within acceptable maximum<br>temperature limits, given the ratings of<br>individual pipe and other components. | Literature review suggests<br>this is not an explicitly<br>managed, real-time<br>operating constraint for<br>district heat networks,<br>and is dealt with through<br>the initial design and<br>broader energy balance<br>when operating |
| Heat   | Emergency<br>backup       | D                                                                      | Maintain supply in case of unplanned<br>outage of supply on district heat<br>network                                                                               |                                                                                                                                                                                                                                         |

| Gas | Operating<br>margins   | Т | Gas production and storage capacity<br>used as backup to manage the grid in<br>periods of severe stress, and for regular<br>balancing of the grid                                     |  |
|-----|------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Gas | Pressure<br>regulation | Т | The ability to inject or withdraw gas to<br>keep the gas pressure at the required<br>level (linepack flexibility). Needed when<br>there is an imbalance between supply<br>and demand. |  |

| Hydrogen | Operating<br>margins   | Т | Hydrogen production and storage<br>capacity used as backup to manage the<br>grid in periods of severe stress, and for<br>regular balancing of the grid                                                                                                                                                                                                                     |  |
|----------|------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Hydrogen | Pressure<br>regulation | Т | The ability to inject or withdraw<br>hydrogen to keep the pressure at the<br>required level (linepack flexibility).<br>Needed when there is an imbalance<br>between supply and demand. Note that<br>hydrogen volumetric energy density is<br>~25% of the level of natural gas, so<br>potential swings in demand may have a<br>larger pressure effect on hydrogen vs<br>gas |  |

Of the services listed above, a number can be removed from further consideration -

Off-grid

<sup>|</sup> D1.1 Energy Storage Mapping Report Baringa Partners LIP is a Limited Liability Partnership registered in England and Wales with registration number OC303471 and with registered offices at 3rd Floor, Dominican Court, 17 Hatfields, London SE1 8DJ UK.



- This is not very applicable to GB, where almost all electricity demand is grid connected
- Do not include this service as not applicable to GB
- Electricity fault level
  - Storage cannot provide this service directly, as power electronic connected assets do not affect fault level. The ability for storage to resolve this constraint is second order, through displacing synchronous distributed generation that contribute to constraint.
  - **Do not include this service** as ability of storage to provide this service is second order
- ▶ Heat network pressure regulation and temperature regulation
  - Literature review does not suggest this is an explicit constraint on district heat networks (in terms of being actively managed in real-time operation) – energy balancing encompasses this, within a system which has considered pressure limits at the design stage
  - Do not include this service as already covered by other services

### 2.2 Separating system benefits and requirements

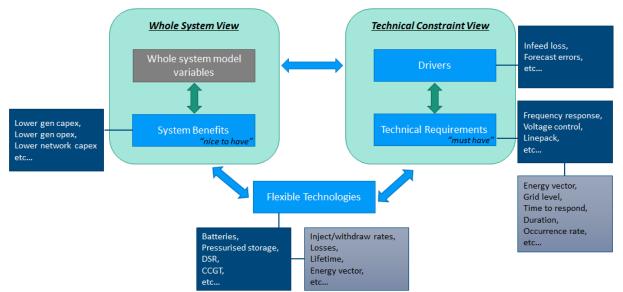
It is clear from the tables above that there are a large number of potential areas where storage can provide flexibility services. Some of these services are interlinked, and are not true independent services. For example, *Demand shifting and peak reduction* and *Network infrastructure investment deferral*, where a reduction in peak demand over a constrained network may result in lower network investment costs. However, some of the services are truly independent, for example *Voltage support* on the electricity network.

We can categorise these overarching services into two types, "System Technical Requirements" and "System Benefits". The definitions of these two categories is described in Table 4.

| System Technical Requirements                                   | System Benefits                                                                                           |  |  |  |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|
| Necessary constraints to operate the system safely and securely | Nice-to-have services for an efficiently utilised system, not necessary but may reduce costs if available |  |  |  |  |
| Network specific                                                | Applicable across multiple energy vectors                                                                 |  |  |  |  |
| Usually independent                                             | Usually not independent from other Benefits                                                               |  |  |  |  |
| Usually technical                                               | Usually economic                                                                                          |  |  |  |  |
| E.g. Pressure regulation on gas network                         | E.g. Variable supply resource integration                                                                 |  |  |  |  |

 Table 4
 Definition of System Technical Requirements and Benefits

System technical requirements are necessary services ("must haves") to run an energy system safely within acceptable limits, whereas system benefits are effectively a "nice-to-have" resulting in more efficient and lower cost operation of the system in terms of capital costs (e.g. generation or network) or reduced operating costs by the potential for peak shaving, more efficient integration of renewables (e.g. avoided spill), etc.


From the perspective of the long-term modelling framework the system benefits can be captured by a well specified whole energy system model, such as ESME, provided it has 'sufficient' temporal and spatial granularity to reflect the costs of the building and operating the system from an overarching

<sup>|</sup> D1.1 Energy Storage Mapping Report



energy balance perspective. By contrast, the technical requirements provide additional constraints, which are often not represented in whole system models due to either lack of granularity or issues which move beyond a simple energy balance, such as pressure constraints or appropriate provision of reactive power to manage voltage levels.

Figure 1 illustrates this separation of system benefits and requirements from a modelling perspective.



#### Figure 1 Modelling characterisation of system benefits versus technical requirements

As an illustration, the need to decarbonise the energy system may require the introduction of intermittent renewables such as wind and solar PV, an example of the *whole system model variables* related to the decision to build such plant. This new intermittent generation will lead to additional *technical requirements*, as it is not possible to forecast the output with 100% accuracy. Hence the level of forecast error on increasing levels of wind/solar will act as a key *driver* for additional reserve replacement requirements, which could in principle be provided by storage. In addition, there may be further economic costs of integrating such intermittent generation that could be reduced by the introduction of storage (or other flexible technologies) – i.e. potential *system benefits*. Network constraints may, for example, lead to the spill of some proportion of the additional intermittent generation. Carefully positioned storage, be it at distribution level or even behind the meter building-level storage, would be one potential option to realise these system benefits. In summary, wider energy system choices may lead to an increased role for storage (and other flexibility options) as part of helping to reduce the overall costs of the energy system.

In Table 5 we categorise the list of services as either system benefits or requirements. It can be seen that there are many more benefits than requirements. As described above, system benefits can be modelled endogenously in a whole system type model, while system requirements are additional constraints that need to be explicitly modelled.

By categorising services in this way the number of services that must be defined in detail (i.e. the system requirements) is much reduced from the original list of services. It should be noted that the storage mapping described here is for the purposes of modelling the long term value of storage to an energy system, and so it is the system cost (rather than storage value streams) that is of interest. It is

<sup>|</sup> D1.1 Energy Storage Mapping Report



this focus on whole system costs that allows benefits to be included in the modelling framework without the need for storage mapping to these services.

|          | Electricity                                | Heat              | Gas | Hydrogen |  |  |  |
|----------|--------------------------------------------|-------------------|-----|----------|--|--|--|
|          | Seasonal storage                           |                   |     |          |  |  |  |
| its      | Network congestion                         | n relief          |     |          |  |  |  |
| Benefits | Network infrastructure investment deferral |                   |     |          |  |  |  |
|          | Demand shifting and peak reduction         |                   |     |          |  |  |  |
| System   | Variable supply res                        | ource integration |     |          |  |  |  |
|          | Flexible waste heat                        | utilisation       |     |          |  |  |  |

#### Table 5 Services mapped to System Benefits and Requirements

| ents     | RoCoF control         | Emergency backup | Pressure regulation | Pressure regulation |
|----------|-----------------------|------------------|---------------------|---------------------|
| _        | Frequency containment |                  | Operating margins   |                     |
| Requirem | Frequency replacement |                  |                     |                     |
| c        | Reserve replacement   |                  |                     |                     |
| Systen   | Voltage support       |                  |                     |                     |
| S        | Black start           |                  |                     |                     |

### 2.3 Defining system benefits

System benefits are captured endogenously in an energy systems model of sufficient granularity and reflect a reduction in the overall costs of building and operating the energy system, separate to costs that *must* be incurred as part of the technical requirements to operate the system. In Table 6 the system benefits are detailed, with the location and time scale over which benefits may be realised.

It can be seen that for the benefits they are broadly recognised at timescales of hourly or greater, whereas most system requirements tend to be within this window and from the order of seconds to 10s of minutes<sup>5</sup>. As long as the modelling granularity is hourly, these benefits will be captured. The benefits are realised at different grid levels, and sufficient spatial granularity must be included to capture these benefits fully. This is particularly true for Network congestion relief and Network infrastructure investment deferral.

The system benefits are listed below, and all benefits result in some combination of savings to generation capex, generation opex, and/or network capex. These costs are traded off in most energy systems type models, which typically optimise to minimise total systems costs.

<sup>&</sup>lt;sup>5</sup> Note that we are distinguishing between the underlying fundamentals of system benefits / requirements from the overarching market structure. Across Europe the time horizons between Gate Closure (of Intra-Day trading) and the start of settlement, and the period of settlement itself for balancing purposes can vary. These are currently 1-hour and ½ hour in GB, respectively. However, regardless of market structure there is a greater need for the System Operator to actively procure services ahead of time to provide 'certainty' around their ability to manage key technical requirements closer to real time, as opposed to relying on market mechanisms with more limited certainty around the availability of such balancing services. This is discussed further within deliverable D1.2.

<sup>|</sup> D1.1 Energy Storage Mapping Report

Baringa Partners LLP is a Limited Liability Partnership registered in England and Wales with registration number OC303471 and with registered offices at 3rd Floor, Dominican Court, 17 Hatfields, London SE18DJ UK.



| Table 6 Syst | em Benefits                                         |                                                                        |            |                                |                               |                             |
|--------------|-----------------------------------------------------|------------------------------------------------------------------------|------------|--------------------------------|-------------------------------|-----------------------------|
| Vector       | Application                                         | Location in<br>network<br>(Building,<br>Distribution,<br>Transmission) | Timescale  | Avoided<br>generation<br>capex | Avoided<br>generation<br>opex | Avoided<br>network<br>capex |
| Multiple     | Seasonal storage                                    | B/D/T                                                                  | Months     | ✓                              | ✓                             |                             |
| Multiple     | Network<br>congestion relief                        | D/T                                                                    | hours      | ✓                              | 1                             |                             |
| Multiple     | Network<br>infrastructure<br>investment<br>deferral | D/T                                                                    | hours-days |                                |                               | 4                           |
| Multiple     | Demand shifting<br>and peak reduction               | B/D/T                                                                  | hours-days | ✓                              | ~                             | 4                           |
| Multiple     | Variable supply<br>resource<br>integration          | B/D/T                                                                  | hours-days | *                              | ~                             |                             |
| Heat         | Flexible waste heat utilisation                     | B/D/T                                                                  | hours-days | ~                              | ~                             |                             |

#### Table 6System Benefits

### 2.4 Defining system technical requirements

The system requirements are technical constraints that need to be satisfied to operate energy networks safely and securely within acceptable limits. When defining the requirements there are two purposes:

- 1. Assess materiality of including the technical requirement in the long term storage modelling framework
- 2. Define technical characteristics to allow flexible technologies capable of providing each requirement to be "mapped"

Table 7 shows the parameters used to describe system requirements. The time to respond, response duration, and frequency of use are all used to map which technologies are capable of providing the requirement. The size of current requirement, potential future size, and drivers of the requirement are used to assess the materiality of the requirement for valuing the long term role of storage.

| D1.1 Energy Storage Mapping Report



| Parameter                               | Description                                                        |
|-----------------------------------------|--------------------------------------------------------------------|
| Energy Vector                           | Which energy vector does this requirement apply to?                |
| Grid Level                              | What grid level does this requirement apply to?                    |
| Time to respond                         | What is the maximum time providers of this service may respond in? |
| Response duration                       | How long does provision of this service last for each event?       |
| Frequency of use                        | How often is this requirement used?                                |
| Size of current requirement             | What is the size of this requirement in 2015/16?                   |
| Potential size of requirement in future | What might the size of the requirement be in the future?           |
| Drivers of requirement                  | What are the fundamental drivers of the requirement?               |
| Other notes                             |                                                                    |

#### Table 7 Parameters for defining system requirements

The table above has been completed for each requirement, and is shown in detail in Appendix A. From the list of technical requirements, two stand out as being less material – Black Start for the electricity networks and Operating Margins for gas networks.

The current agreed cost to provide Black Start is ~£20m per year, compared with ~£100m per year for the other electricity network requirements. It should be noted that the regulator has launched an investigation over the proposed National Grid request to recover >£100m on black start contracts this year (compared to the originally agreed £20m), with some industry participants accusing them of agreeing to highly inflated terms to keep coal generators on the system, due to concerns about very low near term capacity margins<sup>6</sup>. However, this increased level of spend is not expected to persist beyond the relatively near-term, due to other policy measures such as the Capacity Market being used to drive increased capacity margins. Black start costs are therefore expected to be maintained at their historic level over the medium to longer term.

In addition, Black Start procurement is highly bespoke in terms of requirements (particularly spatially across the network), and storage is likely to provide only a very limited role by providing enough power to start up the synchronous generators that provide the bulk of Black Start capacity.

- Black Start
  - Requirement is only £20-30m per year, with highly bespoke technical and locational requirements, with only a small proportion of this likely to be accessible to storage
  - Do not include this service as materiality in valuing storage is low

The current cost to provide gas Operating Margins is  $\sim$ £20m per year. This figure includes storage used to provide back-up capacity under a (rare) severe failure of the network, but also is used for regular pressure regulation, and so overlaps with the Pressure Regulation requirement.

- Operating Margin
  - Requirement is only £20m per year, and overlaps with Pressure Regulation requirement. Including both could result in double counting of requirements

<sup>&</sup>lt;sup>6</sup><u>http://utilityweek.co.uk/news/national-grid-spent-113m-on-black-start-contracts-with-drax-and-sse/1250662#.V2OvkKKwm\_E</u>

<sup>|</sup> D1.1 Energy Storage Mapping Report

Baringa Partners LLP is a Limited Liability Partnership registered in England and Wales with registration number OC303471 and with registered offices at 3rd Floor, Dominican Court, 17 Hatfields, London SE1 8DJ UK.



- **Do not include this service** as materiality is low and is partially covered by Pressure Regulation requirement

A summary of the material requirements is shown in Table 8 below. These characteristics will be used to map storage technologies to requirements.

| Vector      | Requirement              | Time to Respond | Response Duration                                                      | Frequency of Use    |
|-------------|--------------------------|-----------------|------------------------------------------------------------------------|---------------------|
| Electricity | RoCoF control            | <1 secs         | up to 15mins                                                           | 500-1000 per day    |
| Electricity | Frequency<br>containment | <10secs         | ~10-30seconds - but<br>cumulative<br>imbalance<br>equivalent to 30mins | 500-1000 per day    |
| Electricity | Frequency<br>replacement | <30secs         | up to 30mins                                                           | 20-40 times per day |
| Electricity | Reserve<br>replacement   | 30mins-4hours   | 2hours-1day                                                            | 1-30 times per day  |
| Electricity | Voltage support          | <1 sec          | 1s-1min                                                                | 10-100 per day      |
| Heat        | Emergency<br>backup      | 1 hour          | Hours-days                                                             | 1 per year          |
| Gas         | Pressure<br>regulation   | hours-days      | ~6hours                                                                | ~1 per day          |
| Hydrogen    | Pressure regulation      | hours-days      | ~6hours                                                                | ~1 per day          |

 Table 8
 Summary of System Requirement technical characteristics

### 2.5 Define mutual exclusivities

While some technologies may technically be able to provide multiple services, in practice some services cannot be provided at the same time due to the way technologies are utilised for each service. For example, a technology may have the response time and duration to be able to provide variable supply resource integration (i.e. charging up when high electricity generation from wind turbines) and Reserve Replacement. However, to provide Reserve Replacement to cover a rare event such as a plant tripping the technology needs to be positioned at around minimum stable generation (for thermal plant) or nearly full in the case of storage to be able to cover as much of a potential shortfall as possible. Simultaneously, this means that there is limited potential from these technologies to accommodate additional wind generation and avoid spilling this power as the battery is full already.

The separation into system benefits and technical requirements is useful in understanding which services can be provided concurrently with a single technology. The aim of the modelling framework is to consider both the benefits and requirements simultaneously to understand the potential trade-offs for different flexibility options, where there is a choice about the role they provide within the wider energy system. Benefits are realised through balancing energy supply and demand of the system efficiently. Benefits are not independent from one another: in some time periods a technology may be providing one benefit (e.g. *Demand shifting and peak reduction*) through injection of power to the system, and therefore simultaneously providing another benefit (*Network congestion relief* for example). In some periods, however, this injection of power for peak reduction may actually increase network congestion, providing a dis-benefit rather than benefit. It is clear that

<sup>|</sup> D1.1 Energy Storage Mapping Report

Baringa Partners LLP is a Limited Liability Partnership registered in England and Wales with registration number OC303471 and with registered offices at 3rd Floor, Dominican Court, 17 Hatfields, London SE1 8DJ UK.



the benefits are not independent, and can be co-optimised using a supply / demand balancing energy system model.

System requirements are described through technical characteristics other than energy balance, and are often independent. At first glance it may appear possible to provide electricity *Frequency Containment* (injection of active power) at the same time as *Voltage Control* (injection of reactive power). In the following subsections we describe which requirements can be provided concurrently with other requirements and benefits, for each energy vector in turn.

#### 2.5.1 Electricity

After filtering out those requirements that are not significant, there are five key technical requirements to consider:

- RoCoF control
- Frequency containment
- Frequency replacement
- Reserve replacement
- Voltage control

Each requirement can be mapped to one of the current products procured by the Transmission System Operator (TSO), National Grid. The contractual agreements for these current products provide guidelines for mutual exclusivities between these requirements that can be used for this analysis, because they effectively embed technical concerns about the inability of some services to be provided in parallel by the same technology. For example, voltage and reserve requirements could require opposing actions at the same time.

Current rules prevent capacity that is procured for any of these services from concurrently trading in the energy market. In general, capacity procured in one service may not provide any other service. This is to provide the TSO the security that back-up capacity for each service will be ready on demand when required. In the main this prevents technologies from providing any more than one service at a time, though in different periods across the day a technology could, in theory, provide different services.

The exceptions to this are RoCoF control, Frequency containment, and Frequency replacement. These all require the injection or withdrawal of active power, with different response times and slightly different response durations. The TSO currently allows generators (and storage units) to bid for bundles of these services – i.e. providing all three if the response time is fast enough and duration long enough.

Whilst reserve replacement is conceptually similar to this bundle of requirements (i.e. the injection or withdrawal of active power) due to the very long duration of operation this service is contracted separately, to ensure that plant providing this service are not unavailable when called on to provide the more frequent shorter duration services. For example, to provide coverage against the largest potential in-feed loss on the system which is a rare event as opposed to continually (albeit smaller volumes) for the other frequency-based requirements.

| D1.1 Energy Storage Mapping Report



RoCoF control refers to very fast responding active power balancing, and maps to the new TSO product "Enhanced Frequency Response". The inclusion of this very fast acting response reduces the need for the slower Frequency containment. The TSO has indicated that the inclusion of faster RoCoF control will result in a total decrease in "frequency response" type products, as 1MW of RoCoF displaces >1MW of Frequency containment. The scaler from RoCoF capacity to Frequency containment capacity is not yet know, but is thought that ~1.5x. RoCoF capable capacity may be included in the Frequency containment requirement, but with a scaler on the capacity.

Table 9 shows a grid that summarises which electricity system requirements and services can be provided concurrently.

|                       | System<br>Benefits | RoCoF<br>control | Frequency<br>containment | Frequency<br>replacement | Reserve<br>replacement | Voltage<br>support |
|-----------------------|--------------------|------------------|--------------------------|--------------------------|------------------------|--------------------|
| System Benefits       | ✓                  | 3C               | sc                       | sc                       | 3¢                     | sc                 |
| RoCoF control         | sc                 | ~                | 1                        | 1                        | 30                     | sc                 |
| Frequency containment | sc                 | 1                | 1                        | 1                        | 3C                     | 30                 |
| Frequency replacement | x                  | 1                | 1                        | ✓                        | x                      | x                  |
| Reserve replacement   | ×                  | sc               | sc                       | 30                       | ✓                      | x                  |
| Voltage support       | 3                  | sc               | je                       | sc                       | x                      | ~                  |

#### Table 9 Electricity flexibility service mutual exclusivities

#### 2.5.2 Heat

Heat systems have only one remaining requirement to consider in the form of Emergency backup. Emergency backup capacity must be provided to give N-1 supply contingency to each network. To be a true backup it cannot be used for normal use, and therefore cannot provide any system benefits under normal operation. Table 10 summarises this for heat networks.

#### Table 10 Heat flexibility service mutual exclusivities

|                  | System<br>Benefits | Emergency<br>backup |
|------------------|--------------------|---------------------|
| System Benefits  | 1                  | x                   |
| Emergency backup | 30                 | ✓                   |

#### 2.5.3 Gas

Gas systems have only one remaining requirement to consider in the form of pressure regulation. Pressure regulation can be described by the level of gas in the pipe network (i.e. "linepack"). This is kept within certain bounds at all time and means that pressure regulation can be described using energy balance only, without calculating pressure directly. Parameterising the Pressure regulation requirement through the energy balance, considering locational differences that may exist at different geographic nodes of the network, allows it to be considered with all other system benefits, which also are described in terms of energy balances.

| D1.1 Energy Storage Mapping Report



The action of gas supply to inject or withdraw from the network (from e.g. storage, power-to-gas or imports) may help to relieve pressure regulation constraints, while also providing other system services (like peak load shifting for example). Meeting Pressure regulation requirements should be co-optimised with all system benefits in a whole energy system type model, and so we can consider it possible for technologies to provide this requirement concurrently with this services. Table 11 summarises this for gas networks.

#### Table 11 Gas flexibility service mutual exclusivities

|                     | System<br>Benefits | Pressure regulation |
|---------------------|--------------------|---------------------|
| System Benefits     | 1                  | ✓                   |
| Pressure regulation | ~                  | 1                   |

#### 2.5.4 Hydrogen

Hydrogen networks will operate in a similar to gas networks, though with less embedded storage due to the lower density of hydrogen when compared with gas. As with gas, for hydrogen there is one requirement, Pressure regulation, and this can be provided with other services and co-optimised using a whole energy system model (this is summarised in Table 12).

#### Table 12 Hydrogen flexibility service mutual exclusivities

|                     | System<br>Benefits | Pressure regulation |
|---------------------|--------------------|---------------------|
| System Benefits     | 1                  | ✓                   |
| Pressure regulation | ~                  | ✓                   |



## 3 Storage and competing technologies

### 3.1 Overview

To provide the system services a set of technologies is required. In this section we describe in turn:

- The set of technologies to be included, separated into
  - Storage technologies
  - Competing flexible technologies
- > Definitions of the key properties of each technology focusing primarily on storage

There is a huge range of flexible technologies that can be included when modelling the value of storage. To include an exhaustive list would be time consuming, both in terms of data gathering and model complexity and run time, with diminishing returns in terms of the significance to the role of storage. We focus on technologies that appear more promising in the medium term or provide strong differentiation in their characteristics (technical or cost). In addition, the long term modelling framework is flexible such that more technologies can be added in future if required.

### 3.2 Storage technologies

Technologies are defined as energy storage technologies if they demonstrate two characteristics:

- 1. They can inject and hold energy for some period of time, before releasing it again (minus losses)
- 2. The form of energy discharged from the technology (heat, gas, etc) is the same as the form of energy used to charge the technology.
  - However, the stored energy may temporarily be in a different form, e.g. electrical flywheels convert electrical energy to mechanical kinetic energy to store, then convert back to electrical when discharging

It is important to distinguish between storage as a standalone technology, which can help to provide dispatch optionality to the wider system and is the focus of this analysis, versus storage which is just one part of a wider technology and it not considered explicitly here. Examples of the latter include:

- Small-scale solar thermal, seasonal heat storage and Concentrating Solar Power (CSP) where storage is integral to what is effectively a solar energy supply source for heat or electricity
- Industrial heat storage where the process itself (e.g. liquid bitumen in tanks) provides a heat store which can provide some flexibility as a competing Demand Side Response (DSR) option, but which would not be developed as a standalone heat storage technology in its own right

Storage technologies can vary significantly in terms of their method of operation. However, it is useful to describe technologies through a number of parameters which enable them to be mapped (see section 4) to the system services that each technology is capable of providing, and where in the network each technology is capable of being deployed. An energy system modelling framework can

<sup>|</sup> D1.1 Energy Storage Mapping Report



use these mappings to optimise the capacity investment and operation decisions, balancing supply and demand and meeting all system requirements using appropriate technologies and at minimum cost.

Table 13 shows the parameters used to define storage technologies and make investment decisions in an energy systems model. For some technologies it has not been possible to complete all fields. The information necessary to map technologies to system services has been collated, and the missing parameters can be collated at as part of the data gathering in Stage 2 before being used in an energy system model for storage valuation.

| Parameter                       | Value                                                                                 |
|---------------------------------|---------------------------------------------------------------------------------------|
| Туре                            | What is the form of energy storage - mechanical, chemical, etc?                       |
| Input                           | What is the form of input energy from the storage?                                    |
| Output                          | What is the form of output energy from the storage?                                   |
| Maturity                        | How mature is the technology currently                                                |
| Effective capacity (%)          | Can the full storage capacity be used or is there a derating to avoid deep discharge? |
| Round trip efficiency (%)       | How much energy is available after one charge/discharge cycle?                        |
| Temporal losses (%/day)         | How much energy is lost when stored over time?                                        |
| Response time                   | How quickly can the storage begin discharging/charging                                |
| Duration                        | How long typically can the storage discharge/charge                                   |
| Inject/withdraw rate            | What is the typical charge/discharge rate?                                            |
| Energy density by mass          | How much energy can be stored in in 1kg                                               |
| Energy density by volume / area | How much energy can be stored in 1litre / sq m                                        |
| Lifespan (full cycles)          | How many full cycles before the capacity is degraded to ~80%?                         |
| Maximum build                   | Is there a maximum volume that may be built in the UK?                                |
| Maximum build per year          | Is there a constraint on the volume that can be deployed per year?                    |
| Current CAPEX                   | Estimates of current CAPEX                                                            |
| Current OPEX                    | Estimates of current OPEX                                                             |
| Future CAPEX                    | Estimates of future CAPEX                                                             |
| Future OPEX                     | Estimates of future OPEX                                                              |

| Table 13 | Parameters for defining storage technologies |
|----------|----------------------------------------------|
|----------|----------------------------------------------|

Appendix B provides an overview of the parameters for the different storage technologies (n.b. the data at this stage is only intended to be indicative of the technology characteristics with more formal data gathering part of Stage 2). Where possible capital costs are defined as  $\pounds/kW + \pounds/kWh$ . This allows technologies to be sized and costed for different combinations of power output and energy storage volume, and therefore for different response duration. However, the economics of scaling different storage technologies to focus on provision of larger volumes of energy versus higher power outputs may vary considerably and these trade-offs will be explored via the long-term modelling framework.

The key parameters that are used to define system requirements are the time to respond and response duration. If technology costs can be described as above, the technology can be sized to any response duration, and so it is only the time to respond that is used to map technologies to requirements.



Figure 2 provides an illustration of the spread of different *electricity* storage technologies in terms of their likely range of power ratings and discharge times and an indication of the potential roles (subject to their economics) they might provide in the energy system.

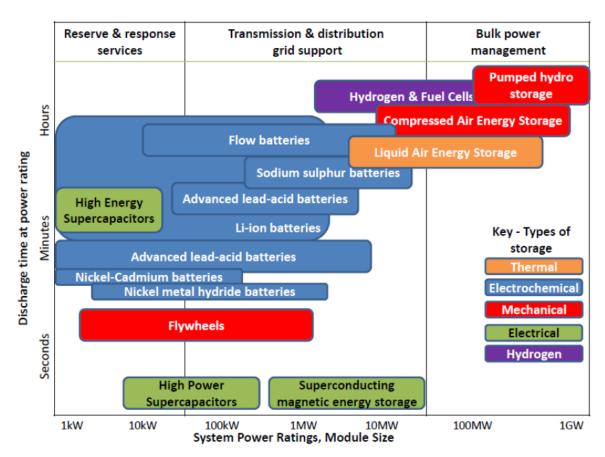



Figure 2 Illustrative overview of electricity storage by discharge time/duration and power

**Source:** G Castagneto Gissey, J Radcliffe, PE Dodds (July 2016) RESTLESS project Briefing Paper: 'Regulatory Barriers to Energy Storage Deployment: The UK Perspective'<sup>7</sup>

**Note:** Hydrogen fuel cells are considered part of conversion technologies in the wider energy system in our framework as they are generally optimised to operate in one direction and are less efficient in a reversible configuration unless constructed with more expensive high-pressure electrolysers. However, in principle reversible fuel cells could be incorporated as a storage electricity storage option using the data parameters outlined in Table 13.

This is complemented by Table 14 which lists the set of storage technologies (for *both* electricity and other vectors) that have been referenced mostly widely as part of the literature reviewed for the different aspects of Stage 1, but which also includes response time as the other key determinant of the ability to provide different types of system services. For example, Li-ion batteries may typically provide response durations in the range of minutes to hours or longer (given combinations of capacity and power rating), but can respond at sub-second level to provide services such as ROCOF and frequency containment. This mapping of technology to provide different services is shown in section 4.1.

<sup>&</sup>lt;sup>7</sup> <u>http://www.restless.org.uk/project-results</u>

<sup>|</sup> D1.1 Energy Storage Mapping Report



The technologies selected span a range of technical characteristics. Whilst there are many other storage technologies not included here, where the technical characteristics are similar to those listed they can be included in the modelling framework at a later date, using the mapping methodology outlined in the following sections of this report. In the main, the more novel storage technologies (not included in the set below) have different costs and cost projections, but similar technical properties to many of the more common technologies.

| Output      | Туре                             | Technology                                                                                                                                                                 | Response time                                        | Duration                                                             |
|-------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|
| Electricity | Mechanical Pumped hydro          |                                                                                                                                                                            | secs-mins                                            | scalable                                                             |
| Electricity | Mechanical                       | Compressed Air Energy Storage (CAES)                                                                                                                                       | 5-15mins                                             | scalable                                                             |
| Electricity | Mechanical                       | Flywheels                                                                                                                                                                  | seconds                                              | scalable                                                             |
| Electricity | Electrochemical                  | Batteries - NaS                                                                                                                                                            | ms                                                   | scalable                                                             |
| Electricity | Electrochemical                  | Flow Batteries – (e.g. Vanadium Redox<br>or zinc bromine)                                                                                                                  | ms                                                   | scalable                                                             |
| Electricity | Electrochemical                  | Batteries – Advanced Pb-Acid                                                                                                                                               | ms                                                   | scalable                                                             |
| Electricity | Electrochemical                  | Batteries – Li-Ion                                                                                                                                                         | ms                                                   | scalable                                                             |
| Electricity | Electrochemical                  | Home battery storage – Li-ion                                                                                                                                              | ms                                                   | ~1 – 5 hours <sup>8</sup>                                            |
| Electricity | Electrical                       | Super capacitors                                                                                                                                                           | ms                                                   | ms-1hour                                                             |
| Electricity | Electrical                       | Superconducting Magnetic Energy<br>Storage (SMES)                                                                                                                          | ms                                                   | ms-5mins                                                             |
| Electricity | Thermal                          | Liquid Air                                                                                                                                                                 | ~1+ minute <sup>9</sup>                              | scalable                                                             |
| Heat        | Sensible Heat<br>Storage         | Underground thermal energy storage<br>(UTES) (water / earth / bedrock)                                                                                                     | Hours                                                | Days-months                                                          |
| Heat        | Sensible Heat<br>Storage         | District heat network accumulator / buffer store                                                                                                                           | Sub-hour                                             | hours-days                                                           |
| Heat        | Sensible Heat<br>Storage         | Building scale hot water storage                                                                                                                                           | Sub-hour                                             | hours                                                                |
| Heat        | Sensible Heat<br>Storage         | Building scale storage heaters (e.g. ceramic)                                                                                                                              | Sub-hour                                             | hours                                                                |
| Heat        | Latent Heat<br>Storage           | Building scale heat storage – various<br>Phase Change Materials (PCM)<br>materials being explored (e.g. Na-<br>acetate Trihydrate, Paraffin, Erytritol)                    | Sub-hour                                             | hours                                                                |
| Heat        | Thermochemical<br>energy storage | Building scale heat storage – various<br>materials being explored – e.g.<br>microporous materials<br>(Aluminophosphate)<br>, composite materials (Porous salt<br>hydrates) | Sub-hour                                             | scalable                                                             |
| Gas         | Physical                         | Liquefied Natural Gas (LNG)                                                                                                                                                | Hours                                                | Scalable                                                             |
| Gas         | Physical                         | Long Range Storage (LRS)                                                                                                                                                   | Within day but<br>generally fixed<br>rate withdrawal | Days-Months (but<br>can have sizeable<br>cushion gas<br>requirement) |
| Gas         | Physical                         | Short Range Storage (SRS)                                                                                                                                                  | Hours                                                | Days – some<br>scalability                                           |

| Table 14 | Summary | of storage | technolo | gy parameters |
|----------|---------|------------|----------|---------------|
|----------|---------|------------|----------|---------------|

<sup>&</sup>lt;sup>8</sup> Given limits on space availability in buildings this may in practice limit the maximum volume of storage and hence the duration over which the storage can be used.

<sup>&</sup>lt;sup>9</sup> If cryogenic feed pumps kept cold and turbine oil warm

<sup>|</sup> D1.1 Energy Storage Mapping Report

Baringa Partners LLP is a Limited Liability Partnership registered in England and Wales with registration number OC303471 and with registered offices at 3rd Floor, Dominican Court, 17 Hatfields, London SE1 8DJ UK.



| Gas      | Physical        | Line-packing (primarily short term balancing)                                                                               | Hours                                                | Hours                                                                |
|----------|-----------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|
| Hydrogen | Physical        | Geological storage                                                                                                          | Within day but<br>generally fixed<br>rate withdrawal | Days-Months (but<br>can have sizeable<br>cushion gas<br>requirement) |
| Hydrogen | Physical        | Bulk storage – compressed, cold<br>compressed (in between ambient<br>compressed and <20K liquid storage),<br>liquid         | Hours                                                | Hours-days –<br>scalable                                             |
| Hydrogen | Materials-based | Various options being explored (metal<br>hydrides, high surface area<br>adsorbents, chemical hydrogen<br>storage materials) | Hours                                                | Hours-days –<br>scalable                                             |

### 3.3 Competing flexible technologies

The system services (technical requirements and benefits) that may be provided by storage technologies are currently provided primarily by non-storage flexible technologies. Storage will only have value to the system if it provides a net reduction in system costs when compared to these alternate technologies.

Similar to storage technologies, the competing flexible technologies can be described though a limited set of parameters, as shown in Table 15. At this stage only some parameters have been gathered, to allow storage mapping, and other parameters will be added later as required for the full energy storage valuation model.

| Parameter                 | Value                                                                           |
|---------------------------|---------------------------------------------------------------------------------|
| Туре                      | What is the type of technology – generation, DSR, interconnector?               |
| Input                     | What is the form of input energy to the technology?                             |
| Output                    | What is the form of output energy from the technology?                          |
| Maturity                  | How mature is the technology currently                                          |
| Efficiency (%)            | Ratio of useful output/input energy                                             |
| Response time / ramp rate | How quickly can the technology start generating / absorbing energy              |
| Lifespan                  | Typical working lifetime                                                        |
| Maximum build             | Is there a maximum volume that may be built in the UK?                          |
| Maximum build per year    | Is there a constraint on the volume that can be deployed per year?              |
| Key drivers of costs      | E.g. are this driven primarily by high fuel operating costs, but low CAPEX, etc |

 Table 15
 Parameters for defining competing flexible technologies

A summary of key competing flexible technologies is shown in Table 16. Further *technical details for individual technologies are given in Appendix C* (n.b. as per the storage technologies the data at this stage is only intended to be indicative of the technology characteristics with more formal data gathering part of Stage 2).

Baringa Partners LLP is a Limited Liability Partnership registered in England and Wales with registration number OC303471 and with registered offices at 3rd Floor, Dominican Court, 17 Hatfields, London SE1 8DJ UK.



| Output      | Technology                                                                                                    | Response time                                                   | Duration                                                                       |
|-------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------|
| Electricity | CCGT (potentially with CCS)                                                                                   | 3 hours from cold, secs when spinning                           | Scalable                                                                       |
| Electricity | OCGT                                                                                                          | 15 mins from cold, secs when spinning                           | Scalable                                                                       |
| Electricity | Coal (Pulverised and IGCC, both potentially with CCS <sup>10</sup> )                                          | 5-6 hours from cold, secs when spinning                         | Scalable                                                                       |
| Electricity | New Nuclear                                                                                                   | 48 hours from cold, secs when spinning                          | Scalable                                                                       |
| Electricity | Diesel engines                                                                                                | <10 mins from cold, secs when spinning                          | Scalable                                                                       |
| Electricity | Gas engines                                                                                                   | <10 mins from cold, secs when spinning                          | Scalable                                                                       |
| Electricity | Biomass combustion (possibly with CCS <sup>10</sup> )                                                         | Comparable to coal ~5-6 hours from cold, secs when spinning     | Scalable                                                                       |
| Electricity | СНР                                                                                                           | 3hours from cold, secs when spinning                            | Scalable                                                                       |
| Electricity | Hydrogen Turbine                                                                                              | Comparable to OCGT ~15mins from cold, secs when spinning        | Scalable                                                                       |
| Electricity | Interconnectors                                                                                               | Seconds                                                         | Hours – dependent on<br>system conditions in<br>connected market               |
| Electricity | DSR (home, commercial and industrial)                                                                         | Hours if price signal, seconds if automated (smart homes)       | Highly dependent on<br>form of DSR, but<br>generally scale of<br>several hours |
| Heat        | District heat backup boiler (gas / biomass)                                                                   | Hours                                                           | Scalable                                                                       |
| Heat        | District heat waste heat recovery                                                                             | Depends on characteristics of source<br>(e.g. as per CHP above) | Scalable                                                                       |
| Heat        | Building scale direct heat production<br>(gas / resistive electricity / biomass<br>without storage)           | Hours                                                           | Scalable                                                                       |
| Gas         | Gas interconnectors                                                                                           | Hours                                                           | Hours-days –<br>dependent on system<br>conditions in connected<br>market       |
| Gas         | Gas DSR                                                                                                       | Hours                                                           | ~1 day up to a week <sup>11</sup>                                              |
| Gas         | Liquefied Natural Gas (LNG)                                                                                   | Hours                                                           | Scalable                                                                       |
| Gas         | Direct Synthetic Natural Gas<br>production and injection <sup>12</sup><br>(electrolysis, gasification routes) | Hours                                                           | Scalable                                                                       |
| Gas         | Biomethane Grid Injection                                                                                     | Hours                                                           | Scalable                                                                       |
| Hydrogen    | Direct hydrogen production and injection <sup>12</sup>                                                        | Hours                                                           | Scalable                                                                       |

#### Table 16 Summary of competing flexible technology parameters

<sup>&</sup>lt;sup>10</sup> Note that CCS variants are expected to have similar response times when spinning, however, for postcombustion capture plants the ability to ramp output up and down (i.e. effecting the volume of response available over short timescales) is slower compared to the non-CCS plant (for pre-combustion IGCC the ramp rates are similar to the non-CCS equivalent plant).

<sup>&</sup>lt;sup>11</sup> Albeit with potentially varying degrees of DSR provided across the week (as outlined in National Grid's DSR methodology).

<sup>&</sup>lt;sup>12</sup> Various routes – electrolysis, coal/biomass gasification

<sup>|</sup> D1.1 Energy Storage Mapping Report

Baringa Partners LLP is a Limited Liability Partnership registered in England and Wales with registration number OC303471 and with registered offices at 3rd Floor, Dominican Court, 17 Hatfields, London SE1 8DJ UK.



## 4 Technology Mapping

### 4.1 Technology to requirements map

Using the technical properties of each technology it is possible to map technologies to the system services they can provide. We shall perform this mapping for system benefits and requirements, for each energy vector in turn.

### 4.1.1 Electricity

The broader system benefits described in Table 6 can be optimised using an energy balance type model, with appropriate temporal granularity and including dynamic constraints for technologies (i.e. response time, ramp rates). With these properties included, it is not necessary to map technologies to system benefits, as the model will choose appropriate technologies to provide benefits where this lowers overall system costs. Table 6 shows that the temporal granularity must be hourly to allow the model to decisions for all system benefits correctly.

The system requirements are often at shorter timescales, and a mapping is needed to define which technologies can provide them. The response time and duration are used to map technologies to requirements. The mapping is show in Table 17.

The response *time* of a technology must be less than the response time of requirements that the technology may provide. Electricity storage technologies tend to be fairly fast responding, especially batteries, and so this is not a binding constraint for most technologies and most requirements. Many of the competing flexible technologies are thermal generation technologies, and these have comparatively slow start up times. These generation technologies can only respond quickly when already generating ("spinning"), and may turn up or down between their minimum stable and maximum output level to provide response.

The response *duration* of a technology must be greater than the response duration of requirements that the technology may provide. It is important to note that some of the requirements have duration that is longer than might be expected from their short time scales. This because while individual actions to respond to the requirement may be short, they often come in quick succession, leading to total effective response times that are far longer.

For electricity storage technologies the duration must be greater than twice the response duration. This is because responding to a requirement can involve charging or discharging, and it is not known which direction will be required. Storage technologies must aim to be in the midpoint of their usable range, ready for responding in either direction. Thus, to provide a requirement of say 30mins duration in either direction, the storage technology must have a usable range of 1hour. However, for most storage technologies we have been able to describe the cost of a technology in f/kW + f/kWh terms – from which it is possible to build and cost storage of any duration – so in most cases duration is not used as a constraint to the mappings. For some technologies, the cost of scaling to long durations may be prohibitive, but this is a decision that can be optimised by an energy systems model.

The competing flexible technologies selected at this stage can respond indefinitely and so are not constrained by response duration.

<sup>|</sup> D1.1 Energy Storage Mapping Report



| Technology                                           | RoCoF control | Frequency containment | Frequency replacement | Reserve<br>replacement | Voltage support |
|------------------------------------------------------|---------------|-----------------------|-----------------------|------------------------|-----------------|
|                                                      | 9             | Storage Options       |                       |                        |                 |
| Pumped hydro                                         | 36            | 30                    | ✔(>30min)             | <b>√</b> (>2hr)        | ✔(>2min)        |
| Compressed Air Energy Storage<br>(CAES)              | 36            | jc                    | 36                    | ✔(>2hr)                | 3C              |
| Flywheels                                            | ✔(>15min)     | ✔(>30min)             | ✔(>30min)             | ગ                      | ✔(>2min)        |
| Batteries – NaS                                      | ✔(>15min)     | ✔(>30min)             | ✔(>30min)             | <b>√</b> (>2hr)        | ✔(>2min)        |
| Flow Batteries                                       | ✔(>15min)     | ✔(>30min)             | ✔(>30min)             | <b>√</b> (>2hr)        | ✔(>2min)        |
| Batteries - Advanced Pb-Acid                         | ✔(>15min)     | ✔(>30min)             | ✔(>30min)             | <b>√</b> (>2hr)        | ✔(>2min)        |
| Batteries - Li-Ion                                   | ✔(>15min)     | ✔(>30min)             | ✔(>30min)             | <b>√</b> (>2hr)        | ✔(>2min)        |
| Home battery storage - Li-ion                        | ✔(>15min)     | ✔(>30min)             | ✔(>30min)             | 35                     | ✔(>2min)        |
| Super capacitors                                     | ✔(>15min)     | ✔(>30min)             | 3ć                    | 36                     | ✔(>2min)        |
| Superconducting Magnetic<br>Energy Storage (SMES)    | 30            | 30                    | 30                    | sc                     | ✔(>2min)        |
| Liquid air                                           | st            | 3C                    | 3C                    | <b>√</b> (>2hr)        | sc              |
|                                                      | Othe          | er Flexibility Opt    | ions                  |                        |                 |
| CCGT                                                 | 3C            | ✔(spin)               | ✔(spin)               | ✔(spin)                | ✓(spin)         |
| OCGT                                                 | 3C            | ✔(spin)               | ✔(spin)               | ✓                      | ✓(spin)         |
| Coal                                                 | 3ć            | ✔(spin)               | ✔(spin)               | ✔(spin)                | ✓(spin)         |
| New Nuclear                                          | 3C            | ✔(spin)               | ✔(spin)               | ✔(spin)                | ✓(spin)         |
| Diesel engines                                       | 36            | ✔(spin)               | ✔(spin)               | ✓                      | ✓(spin)         |
| Gas engines                                          | 3C            | ✔(spin)               | ✔(spin)               | ✓                      | ✔(spin)         |
| Biomass                                              | 3C            | ✔(spin)               | ✔(spin)               | ✔(spin)                | ✔(spin)         |
| СНР                                                  | 36            | ✔(spin)               | ✔(spin)               | ✔(spin)                | ✔(spin)         |
| Hydrogen Turbine                                     | 36            | ✔(spin)               | ✔(spin)               | ✔(spin)                | ✔(spin)         |
| Interconnectors                                      | 3t            | ✓                     | ✓                     | ✓                      | ✓               |
| DSR (home, commercial and industrial <sup>13</sup> ) | x             | ~                     | ~                     | 4                      | 1               |

#### Table 17 Electricity technology -> requirements map

#### 4.1.2 Heat

As with electricity, system benefits do not need to be mapped as the decision to use the most appropriate technology can be captured in a model with enough granularity.

There is only one system requirement for heat, which is the provision of emergency backup supply. This requires a response time of 1hr and a duration of ~12 hours. All heat storage and competing flexible technologies have response times of faster than 1 hour and can be sized to have duration of greater than 12 hours, and so all technologies are capable of providing this requirement

<sup>&</sup>lt;sup>13</sup> Where not driven indirectly by a heat or gas/hydrogen related storage device. For example, DSR of refrigeration appliances would be considered within home DSR, whereas hot water storage tanks are discrete heat storage devices.

<sup>|</sup> D1.1 Energy Storage Mapping Report

Baringa Partners LLP is a Limited Liability Partnership registered in England and Wales with registration number OC303471 and with registered offices at 3rd Floor, Dominican Court, 17 Hatfields, London SE1 8DJ UK.



#### 4.1.3 Gas and hydrogen

As with electricity, system benefits do not need to be mapped as the decision to use the most appropriate technology can be captured in a model with enough granularity.

There is only one material system requirement for gas/hydrogen, which is pressure regulation of the transmission network. This requires a response time of a few hours and duration of ~6 hours. All gas/hydrogen storage and competing flexible technologies have response times of less than 1 hour and duration of greater than 6 hours, and so all technologies are capable of providing this requirement.

### 4.2 Technology to location map

There are three dimensions to where technologies can be situated:

- 1. Network hierarchy
  - Building
  - Distribution level
  - Transmission level
- 2. Population density
  - Rural
  - Sub-Urban
  - Urban
- 3. Geographical
  - Scotland
  - North of England
  - East Anglia
  - etc

It is assumed that all technologies can be situated in all geographical regions (Scotland, East Anglia etc) unless these are explicitly excluded (e.g. due to lack of suitable geological storage capability for gas/hydrogen). There be some maximum cap on possible deployment again due largely due to geology and the current ESME model has these constraints for some of the larger technologies. This information will need to be collated for all technologies where constraints exist.

Population density only affects technologies connected at distribution level – at transmission level the densities are low enough not to be a constraint. It is assumed that a single technology that connects at distribution level will be small enough to connect in areas of high, urban population density, and so population density is not a constraint in this sense. However – the total sum of technologies deployed in urban areas should be tracked by the model, as a very high deployment may not credible in terms of space requirements. At a minimum the results from an investment decision model should be checked ex-post for credibility, or a constraint added to the model to ensure reasonable rates of deployment in populous areas. Similarly, building level technologies, such as heat storage, are likely to be constrained practically by the availability of space within the building itself that would be devoted to storage.

<sup>|</sup> D1.1 Energy Storage Mapping Report

Baringa Partners LLP is a Limited Liability Partnership registered in England and Wales with registration number OC303471 and with registered offices at 3rd Floor, Dominican Court, 17 Hatfields, London SE1 8DJ UK.



Where technologies are situated in the network hierarchy is primarily a function on their footprint and typical size (MW). Table 18 and Table 19 show the network location mappings for storage and competing technologies respectively.

| Output      | Technology                                                                                                         | Grid Level<br>(Transmission,<br>Distribution, Building) |
|-------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Electricity | Pumped hydro                                                                                                       | Т                                                       |
| Electricity | Compressed Air Energy Storage (CAES)                                                                               | T/D                                                     |
| Electricity | Flywheels                                                                                                          | T/D                                                     |
| Electricity | Batteries – NaS                                                                                                    | T/D                                                     |
| Electricity | Flow Batteries                                                                                                     | T/D                                                     |
| Electricity | Batteries - Advanced Pb-Acid                                                                                       | T/D                                                     |
| Electricity | Batteries - Li-Ion                                                                                                 | T/D                                                     |
| Electricity | Home battery storage - Li-ion                                                                                      | В                                                       |
| Electricity | Super capacitors                                                                                                   | T/D                                                     |
| Electricity | Superconducting Magnetic Energy Storage (SMES)                                                                     | T/D                                                     |
| Electricity | Liquid air                                                                                                         | T/D                                                     |
| Heat        | Underground thermal energy storage (UTES)                                                                          | D                                                       |
| Heat        | District heat network accumulator / buffer store                                                                   | D                                                       |
| Heat        | Building scale hot water storage (sensible)                                                                        | В                                                       |
| Heat        | Building scale storage heaters (e.g. ceramic) (sensible)                                                           | В                                                       |
| Heat        | Building scale heat storage - Phase Change Materials                                                               | В                                                       |
| Heat        | Building scale heat storage – Thermochemical Energy Storage                                                        | В                                                       |
| Gas         | Liquid natural gas (LNG)                                                                                           | Т                                                       |
| Gas         | Long range storage (LRS)                                                                                           | Т                                                       |
| Gas         | Short range storage (SRS)                                                                                          | Т                                                       |
| Gas         | Line-packing                                                                                                       | T/D                                                     |
| Hydrogen    | Geological storage                                                                                                 | Т                                                       |
| Hydrogen    | Bulk storage - compressed, cold compressed (in between<br>ambient compressed and <20K liquid storage), liquid      | T/D                                                     |
| Hydrogen    | Various options being explored (metal hydrides, high surface area adsorbents, chemical hydrogen storage materials) | T/D                                                     |

 Table 18
 Storage technology -> network location map



| Output      | Technology                                                                                                 | Grid Level<br>(Transmission,<br>Distribution,<br>Building) |
|-------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Electricity | CCGT (potentially with CCS)                                                                                | Т                                                          |
| Electricity | OCGT                                                                                                       | Т                                                          |
| Electricity | Coal (Pulverised and IGCC, both potentially with CCS)                                                      | Т                                                          |
| Electricity | New Nuclear                                                                                                | Т                                                          |
| Electricity | Diesel engines                                                                                             | T/D                                                        |
| Electricity | Gas engines                                                                                                | T/D                                                        |
| Electricity | Biomass                                                                                                    | T/D                                                        |
| Electricity | СНР                                                                                                        | T/D                                                        |
| Electricity | Hydrogen Turbine                                                                                           | Т                                                          |
| Electricity | Interconnectors                                                                                            | Т                                                          |
| Electricity | DSR (home, commercial and industrial)                                                                      | В                                                          |
| Heat        | District heat backup boiler (gas / biomass)                                                                | D                                                          |
| Heat        | District heat waste heat recovery                                                                          | T/D                                                        |
| Heat        | Building scale direct heat production (gas / resistive electricity / biomass without storage)              | В                                                          |
| Gas         | Gas interconnectors                                                                                        | Т                                                          |
| Gas         | Gas DSR                                                                                                    | В                                                          |
| Gas         | Liquified Natural Gas (LNG)                                                                                | Т                                                          |
| Gas         | Direct Synthetic Natural Gas production and injection <sup>14</sup><br>(electrolysis, gasification routes) | T/D                                                        |
| Gas         | Biomethane Grid Injection                                                                                  | T/D                                                        |
| Hydrogen    | Direct hydrogen production and injection <sup>12</sup>                                                     | T/D                                                        |

| Table 19 | Competing flexible technology -> network location map |
|----------|-------------------------------------------------------|
|          |                                                       |

<sup>&</sup>lt;sup>14</sup> Various routes – electrolysis, coal/biomass gasification

<sup>|</sup> D1.1 Energy Storage Mapping Report

Baringa Partners LLP is a Limited Liability Partnership registered in England and Wales with registration number OC303471 and with registered offices at 3rd Floor, Dominican Court, 17 Hatfields, London SE18DJ UK.



## 5 References

- 1. National Grid, *Enhance Frequency Response, Invitation to Tender for Pre-Qualified parties,* April 2016
- 2. Baringa analysis, using historic frequency data at 1 second granularity, from National Grid
- 3. National Grid, Enhanced Frequency Response Seminar, June 2016
- 4. Baringa, Assessment of the near term market potential for energy storage, June 2016
- 5. National Grid, System Operability Framework 2015, November 2015
- 6. International Energy Agency, Technology Roadmap, Energy Storage, March 2014
- 7. National Grid, Monthly Balancing Services Summary 2015/16, March 2016
- 8. National Grid, Weekly OPMR 2016 Jan\_Jun, June 2016
- 9. National Grid, Reactive Power 36th Tender Round Market Report, December 2015
- 10. National Grid, Future Energy Scenarios, July 2015
- 11. Informal conversations between Baringa and National Grid, May 2016
- 12. Baringa analysis, using historic linepack actual data, from National Grid
- 13. National Grid, Operating Margins Report, August 2015
- 14. National Grid, 2014/15 Operating Margins Statement, February 2014
- 15. Sandia National Laboratories, *DOE/EPRI Electricity Storage Handbook in Collaboration with NRECA*, February 2015
- 16. EC Directorate-General for Energy, *The future role and challenges of Energy Storage*, January 2013
- 17. Black & Veatch, Cost and Performance data for Power Generation Technologies, February 2012
- 18. Lazard, Levelised Cost of Storage Analysis, November 2015
- 19. ENEA, Facts & Figures Energy Storage, March 2012
- 20. IRENA, Battery Storage for Renewables, January 2015
- Power Vault, Technical Specification http://www.powervault.co.uk/technical/technical-specifications, accessed June 2016
- 22. Financial Times, UK solar start-up powers up to take on Tesla's home battery, June 2015
- 23. UKERC (2014) Future role of thermal energy storage in the UK
- 24. Element Energy (2015) Research on district heating and local approaches to heat decarbonisation
- 25. ESME v4.0 Database
- 26. Dimplex Heatbook www.dimplex.co.uk/assets/kb/brochure/0/Heat\_Book.pdf

<sup>|</sup> D1.1 Energy Storage Mapping Report

Baringa Partners LLP is a Limited Liability Partnership registered in England and Wales with registration number OC303471 and with registered offices at 3rd Floor, Dominican Court, 17 Hatfields, London SE1 8DJ UK.



- 27. IRENA-ETSAP (2013) Thermal Energy Storage Brief
- 28. OIES (2013) Gas Storage in Great Britain Oxford Institute for Energy Studies
- 29. DECC (2015) Delivering UK Energy Investment: Networks
- 30. LNG Journal (2006) Engineering Forum Study on six LNG regasification systems
- 31. ETI (2015) The role of hydrogen storage in a clean responsive power system
- 32. E4Tech et al (2015) Scenarios for deployment of hydrogen in contributing to meeting carbon budgets report for CCC
- 33. DECC, Digest of UK Energy Statistics (DUKES<sup>15</sup>), Annex A, 2015
- 34. ETI, ESME Patchwork v3.4 database
- 35. Eurelectric, Efficiency in electricity generation<sup>16</sup>, 2013
- 36. Wikipedia, Energy density<sup>17</sup>
- 37. National Grid, National Electricity Transmission System Performance Report 2013 2014
- 38. Aggreko, Diesel generator hire<sup>18</sup>
- 39. RTE, France-England interconnection<sup>19</sup>
- 40. Tennet, HVDC Transmission & Lifetime Expectancy<sup>20</sup>, 2004
- 41. Frontier Economics, *Future potential for DSR in GB*<sup>21</sup>, 2015
- 42. DECC, Digest of UK Energy Statistics (DUKES<sup>22</sup>), Chapter 4, 2015
- 43. National Grid, Final LDZ Shrinkage Proposal for Formula Year 2015/16<sup>23</sup>

15

bbNAhWB2hoKHbuzAC8QFggeMAE&url=http%3A%2F%2Fwww.eurelectric.org%2FDownload%2FDownload.asp x%3FDocumentID%3D13549&usg=AFQjCNH\_41MwVJ57EVzrpWHxpDmc1WkZ-w&sig2=6ZxtBFGjHJxeAFWzlo2-LA&bvm=bv.124817099,d.bGs

<sup>17</sup> <u>https://en.wikipedia.org/wiki/Energy\_density</u>

<sup>18</sup> <u>http://www.aggreko.co.uk/products-services-overview/power-generator-hire/diesel-generator-hire/</u>
<sup>19</sup> <u>http://clients.rte-</u>

france.com/lang/an/clients traders fournisseurs/services clients/inter france angleterre.jsp 20

<sup>21</sup> <u>https://www.gov.uk/government/uploads/system/uploads/attachment\_data/file/467024/rpt-frontier-DECC\_DSR\_phase\_2\_report-rev3-PDF-021015.pdf</u>

https://www.gov.uk/government/uploads/system/uploads/attachment\_data/file/447631/DUKES\_2015\_Chapt er\_4.pdf

23

https://www.gov.uk/government/uploads/system/uploads/attachment\_data/file/447648/DUKES\_2015\_Annex \_A.pdf

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwi9w dS8-

http://www.tennet.eu/nl/fileadmin/downloads/About\_Tennet/Publications/Other\_Publications/Application%2 Ofor%20Norned/plugin-19-B7-HVDC Transmission and Lifetime Expectancy tcm41-12302.pdf

http://www.gasgovernance.co.uk/sites/default/files/National%20Grid%20Final%20LDZ%20Shrinkage%20Quan tity%20Proposals%202015-2016.pdf

<sup>|</sup> D1.1 Energy Storage Mapping Report

Baringa Partners LLP is a Limited Liability Partnership registered in England and Wales with registration number OC303471 and with registered offices at 3rd Floor, Dominican Court, 17 Hatfields, London SE1 8DJ UK



- 44. Interconnector, *Record breaking gas flows through the Interconnector pipeline*<sup>24</sup>, June-16
- 45. CEPA, The economic lives of energy network assets<sup>25</sup>, 2010
- 46. PetroWiki, Efficiency losses in the LNG value chain<sup>26</sup>, 2012
- 47. South Hook, Contributing to the UK's Energy Needs<sup>27</sup>
- 48. Danish Maritime Authority, North European LNG Infrastructure Project<sup>28</sup>, 2012
- 49. Malardalen University, Energy Efficiency Evaluation of two Biogas Plants<sup>29</sup>, 2011
- 50. OECD, Biogas production<sup>30</sup>
- 51. Wartsilla<sup>31</sup>
- 52. National Grid Gas Demand Side Response<sup>32</sup>
- 53. Ofgem (2013) Gas Security of Supply Significant Code Review Demand-Side Response Tender Consultation
- 54. Green Tech Media Amber Kinetics Turning Flywheels Into Multi-Hour Energy Storage Assets<sup>33</sup>
- 55. Brett G, and Barnett M (2014) The application of liquid air energy storage for large scale long duration solutions to grid balancing EPJ Web of Conferences 79, 03002 (2014)<sup>34</sup>

operations/Balancing/Gas-DSR/

<sup>&</sup>lt;sup>24</sup> <u>http://www.interconnector.com/operational-data/historical-data/record-flows/</u>

<sup>&</sup>lt;sup>25</sup> https://www.ofgem.gov.uk/ofgem-publications/53853/cepa-econ-lives.pdf

<sup>&</sup>lt;sup>26</sup> <u>http://petrowiki.org/File%3AVol6\_Page\_364\_Image\_0001.png</u>

<sup>&</sup>lt;sup>27</sup> https://www.southhookIng.com/about-us/our-business/

<sup>28</sup> 

http://www.dma.dk/themes/LNGinfrastructureproject/Documents/Final%20Report/LNG Full report Mgg 20 12 04 02 1.pdf

<sup>&</sup>lt;sup>29</sup> https://www.diva-portal.org/smash/get/diva2:583505/FULLTEXT01.pdf

<sup>&</sup>lt;sup>30</sup> <u>https://www.oecd.org/env/outreach/36203835.pdf</u>

<sup>&</sup>lt;sup>31</sup> <u>http://www.wartsila.com/energy/learning-center/technical-comparisons/combustion-engine-vs-gas-turbine-advantages-of-modularity</u>

<sup>&</sup>lt;sup>32</sup> <u>http://www2.nationalgrid.com/UK/Industry-information/Gas-transmission-system-</u>

<sup>&</sup>lt;sup>33</sup> http://www.greentechmedia.com/articles/read/Amber-Kinetics-Turning-Flywheels-into-Multi-Hour-Energy-Storage-Assets

<sup>&</sup>lt;sup>34</sup> http://www.epj-

conferences.org/articles/epjconf/abs/2014/16/epjconf\_e2c2013\_03002/epjconf\_e2c2013\_03002.html

<sup>|</sup> D1.1 Energy Storage Mapping Report

Baringa Partners LLP is a Limited Liability Partnership registered in England and Wales with registration number OC303471 and with registered offices at 3rd Floor, Dominican Court, 17 Hatfields, London SE1 8DJ UK



# Appendix A System requirement details

# A.1 Electricity

#### Table 20 Electricity RoCoF control

| Parameter                                  | Value                                                                                                                                                                                                                                                                |     |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Energy vector                              | Electricity                                                                                                                                                                                                                                                          |     |
| Grid Level                                 | All levels (it is a power balance issue) but dealt with by TSO                                                                                                                                                                                                       |     |
| Time to respond                            | <1 secs                                                                                                                                                                                                                                                              | [1] |
| Response duration                          | ~30 seconds but up to 15mins (up or down) through repeated action                                                                                                                                                                                                    | [1] |
| Frequency of use                           | 500-1000 per day                                                                                                                                                                                                                                                     | [2] |
| Size of current requirement                | new product - NG aiming for up to 200MW                                                                                                                                                                                                                              | [1] |
| Potential size of<br>requirement in future | Unclear – though likely to increase as system inertia reduces                                                                                                                                                                                                        |     |
| Drivers of requirement                     | Increase in largest infeed loss (Hinkley point), increase in the largest infeed demand (new interconnector), reduction in system inertia Rate of change of frequency is inversely proportional to system inertia                                                     |     |
| Other notes                                | This requirement is bi-directional, and is approximately balanced in each direction (ie 200MW up and 200MW down). Increased RoCoF Control results in a reduction in Frequency Containment and Replacement, 1MW of RoCoF control > 1MW of Containment or Replacement. |     |

#### Table 21 Electricity Frequency Containment

| Parameter                                  | Value                                                                                                                                                                                                                                                   |     |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Energy vector                              | Electricity                                                                                                                                                                                                                                             |     |
| Grid Level                                 | All levels (it is a power balance issue) but dealt with by TSO                                                                                                                                                                                          |     |
| Time to respond                            | <10secs                                                                                                                                                                                                                                                 | [3] |
| Response duration                          | ~30seconds –<br>but for storage technologies cumulative imbalance to 30mins through repeated<br>action                                                                                                                                                  |     |
| Frequency of use                           | 500-1000 per day (+/- 0.5 Hz deviation)                                                                                                                                                                                                                 | [2] |
| Size of current requirement                | ~1200MW summer, ~1000MW winter<br>Peak of 1800MW in Summer overnight<br>£150mn per year                                                                                                                                                                 |     |
| Potential size of<br>requirement in future | ~3-4x higher in 2030                                                                                                                                                                                                                                    |     |
| Drivers of requirement                     | Increase in largest infeed loss (Hinkley point), increase in the largest infeed demand (new interconnector), reduction in system inertia                                                                                                                |     |
| Other notes                                | This requirement is broadly bi-directional, and is approximately balanced in each direction (ie 1100MW up and 1100MW down), but this is dependent on the relative sizes of the largest generator vs interconnector and may become asymmetric in future. |     |



| Parameter                                  | Value                                                                        | Source                                                            |
|--------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Energy vector                              | Electricity                                                                  |                                                                   |
| Grid Level                                 | All levels (it is a power balance issue) but dealt with by TSO               |                                                                   |
| Time to respond                            | <30secs                                                                      | [3]                                                               |
| Response duration                          | up to 30mins                                                                 | [3]                                                               |
| Frequency of use                           | 20-40 times per day                                                          | [5]                                                               |
| Size of current<br>requirement             | ~1400MW summer, ~1300MW winter<br>~£140mn per year                           | [3]<br>[7] (minus<br>Frequency<br>Containment<br>figure<br>above) |
| Potential size of<br>requirement in future | Similar increase to Frequency containment - 3-4x increase by 2030            |                                                                   |
| Drivers of requirement                     | Increase in largest infeed loss (Hinkley point), reduction in system inertia |                                                                   |
| Other notes                                |                                                                              |                                                                   |

# Table 22 Electricity Frequency Replacement

## Table 23 Electricity Reserve Replacement

| Parameter                                  | Value                                                                                                                                                     |     |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Energy vector                              | Electricity                                                                                                                                               |     |
| Grid Level                                 | All levels (it is a power balance issue) but dealt with by TSO                                                                                            |     |
| Time to respond                            | 30mins-4hours                                                                                                                                             | [4] |
| Response duration                          | 2hours-1day                                                                                                                                               | [6] |
| Frequency of use                           | 1-30 times per day                                                                                                                                        | [5] |
| Size of current<br>requirement             | ~3000-4000MW                                                                                                                                              |     |
|                                            | £95mn per year (£60mn in 2015 due to mild year)                                                                                                           |     |
| Potential size of<br>requirement in future | Will increase due to increase in Reserve for Response, and increase in wind generation. Could decrease if wind forecast error improves.                   |     |
| Drivers of requirement                     | Wind capacity and forecast error, Solar PV capacity, demand, largest infeed loss (over extend duration), system inertia                                   |     |
| Other notes                                | This requirement is bi-directional, though Up reserve (ie increase of active power to balance a shortfall in supply) is slightly higher than Down reserve |     |

Baringa Partners LLP is a Limited Liability Partnership registered in England and Wales with registration number OC303471 and with registered offices at 3rd Floor, Dominican Court, 17 Hatfields, London SE18DJ UK.



| Parameter                                  | Value                                                                                                                                                                                                          |     |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Energy vector                              | Electricity                                                                                                                                                                                                    |     |
| Grid Level                                 | Transmission and Distribution - issue is mainly being created at distribution level but resolved at transmission level                                                                                         |     |
| Time to respond                            | <1 sec                                                                                                                                                                                                         | [6] |
| Response duration                          | 1s-1min                                                                                                                                                                                                        | [6] |
| Frequency of use                           | 10-100 per day                                                                                                                                                                                                 | [6] |
| Size of current requirement                | 33.6TVArh injection of reactive power, 6.2TVArh absorption on transmission system                                                                                                                              | [9] |
|                                            | 1800MVar peak                                                                                                                                                                                                  | [5] |
|                                            | £75mn per year on transmission                                                                                                                                                                                 | [4] |
| Potential size of<br>requirement in future | 14000MVar peak in 2035                                                                                                                                                                                         | [5] |
| Drivers of requirement                     | Reduction in inductive load (ie motors), increase in capacitive load (ie<br>EnergySaving lighting), increased use of capacitive cables, reduction in<br>apparent power import to LDNs (or even export upwards) |     |
| Other notes                                | Majority of reactive power compensation is conducted at transmission level                                                                                                                                     |     |

# Table 24 Electricity Voltage Support

#### Table 25Electricity Black Start

| Parameter                                  | Value                                                                                                                                                                                                                                                                          | Source |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Energy vector                              | Electricity                                                                                                                                                                                                                                                                    |        |
| Grid Level                                 | Transmission                                                                                                                                                                                                                                                                   |        |
| Time to respond                            | 1hour                                                                                                                                                                                                                                                                          | [6]    |
| Response duration                          | 1hour-4hours                                                                                                                                                                                                                                                                   | [6]    |
| Frequency of use                           | <1 per year                                                                                                                                                                                                                                                                    | [6]    |
| Size of current<br>requirement             | £20mn                                                                                                                                                                                                                                                                          | [4]    |
| Potential size of<br>requirement in future | Similar to current size                                                                                                                                                                                                                                                        |        |
| Drivers of requirement                     | Level of demand                                                                                                                                                                                                                                                                |        |
| Other notes                                | Service providers must be available in case of black start - ie storage must be<br>fully charged and not used for other services. Typical black start timeframe is 1.<br>Batteries discharge, 2. Diesel backup generators fire up, 3. Large synchronous<br>generators fire up. |        |



# A.2 Gas and hydrogen

#### Table 26 Gas Pressure Regulation

| Parameter                                  | Value                                                                                                                                                                                                                                                                                                                                      | Source |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Energy vector                              | Gas                                                                                                                                                                                                                                                                                                                                        |        |
| Grid Level                                 | Primarily Transmission                                                                                                                                                                                                                                                                                                                     |        |
| Time to respond                            | hours                                                                                                                                                                                                                                                                                                                                      | [11]   |
| Response duration                          | ~6hours                                                                                                                                                                                                                                                                                                                                    | [11]   |
| Frequency of use                           | ~1 per day                                                                                                                                                                                                                                                                                                                                 | [11]   |
| Size of current requirement                | Current linepack swings are ~20mcm per day. Range of linepack values for 2015-16 was 317-367mcm, this can be considered the safe operating margin.                                                                                                                                                                                         |        |
|                                            | Currently ample storage to provide balancing in this range.                                                                                                                                                                                                                                                                                | [11]   |
| Potential size of<br>requirement in future | Likely to decrease due to decreasing gas demand                                                                                                                                                                                                                                                                                            |        |
| Drivers of requirement                     |                                                                                                                                                                                                                                                                                                                                            |        |
| Other notes                                | Linepack refers to volume of gas held in in the gas network. Swings of 20mcm<br>per day are observed, with limits of 50mcm across the year. This is the result of<br>NG taking balancing actions to correct for market imbalances, and ensure<br>pressures remain at safe levels. Can use linepack limits as proxy for pressure<br>limits. |        |

#### Table 27 Gas (and hydrogen) Operating Margins

| Parameter                               | Value                                                                                                                                                                                                                                                                         |              |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Energy vector                           | Gas (and similarly for hydrogen)                                                                                                                                                                                                                                              |              |
| Grid Level                              | Primarily Transmission                                                                                                                                                                                                                                                        |              |
| Time to respond                         | hours                                                                                                                                                                                                                                                                         |              |
| Response duration                       | ~6hours                                                                                                                                                                                                                                                                       |              |
| Frequency of use                        | ~1 per year                                                                                                                                                                                                                                                                   |              |
| Size of current requirement             | 1160GWh in winter, 490GWh in summer<br>£22mn                                                                                                                                                                                                                                  | [14]<br>[13] |
| Potential size of requirement in future | Likely to decrease with declining gas demand                                                                                                                                                                                                                                  | [10]         |
| Drivers of requirement                  | Projected reduction in gas demand reducing balancing requirement. Increased intermittent power generation may make gas use from CCGTs more intermittent, increasing balancing requirements (though in many scenarios gas demand for power generation is decreasing long term) | [10]         |
| Other notes                             | Operating margins are used for both imbalances and for severe system failures.<br>There is some overlap with pressure regulation in terms of imbalances.                                                                                                                      |              |



| Parameter                                  | Value                                                                                                               |  |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| Energy vector                              | Hydrogen                                                                                                            |  |
| Grid Level                                 | Transmission (ie assume similar to gas NTS)                                                                         |  |
| Time to respond                            | hours (assume same as gas)                                                                                          |  |
| Response duration                          | ~6hours (assume same as gas)                                                                                        |  |
| Frequency of use                           | ~1 per day (assume same as gas)                                                                                     |  |
| Size of current<br>requirement             | Assume pressure range similar to gas, ie acceptable range in network hydrogen volumes of ~+/- 7.5%.                 |  |
| Potential size of<br>requirement in future | Likely to be similar in % terms, but absolute levels will increase due to increasing hydrogen demand                |  |
| Drivers of requirement                     | Increasing H2 demand - Gas to H2 switching, H2 as storage for excess<br>renewable electricity generation            |  |
| Other notes                                | As hydrogen energy density ~25% that of natural gas this implies a much tighter balancing range in terms of energy. |  |

# Table 28 Hydrogen Pressure Regulation

# A.3 Heat

#### Table 29 Heat Emergency Backup

| Parameter                               | Value                                                                                                                    | Source |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------|
| Energy vector                           | Heat                                                                                                                     |        |
| Grid Level                              | Distribution                                                                                                             |        |
| Time to respond                         | 1 hour                                                                                                                   |        |
| Response duration                       | Hours-days                                                                                                               |        |
| Frequency of use                        | 1 per year                                                                                                               |        |
| Size of current<br>requirement          | All heat networks need back-up heat supply in case of failure – ~N-1 contingency, often provided by gas / diesel boilers |        |
| Potential size of requirement in future | N-1 requirement likely to remain                                                                                         |        |
| Drivers of requirement                  | Absolute level in MW is driven by the level of heat network deployment                                                   |        |
| Other notes                             |                                                                                                                          |        |



# Appendix B Storage technologies details

# **B.1** Electricity

#### Table 30 Pumped hydro details

| ·                               |                                                         |                              |        |
|---------------------------------|---------------------------------------------------------|------------------------------|--------|
| Parameter                       | Value                                                   | Notes                        | Source |
| Туре                            | Mechanical                                              |                              |        |
| Input                           | Electricity                                             |                              |        |
| Output                          | Electricity                                             |                              |        |
| Maturity                        | Mature                                                  |                              |        |
| Effective capacity (%)          | 100%                                                    |                              | [15]   |
| Round trip efficiency<br>(%)    | 81%                                                     |                              | [15]   |
| Temporal losses<br>(%/day)      | 0%                                                      |                              | [16]   |
| Response time                   | 10 secs-2 mins                                          |                              | [16]   |
| Duration                        | 8-16h                                                   |                              | [15]   |
| Inject/withdraw rate            | 100-5000MW                                              |                              | [16]   |
| Energy density by<br>mass       | 0.5-1.5Wh/kg                                            |                              | [16]   |
| Energy density by volume / area |                                                         |                              |        |
| Lifespan (full cycles)          | 50-100 years                                            |                              | [16]   |
| Maximum build                   | Limited opportunities for new storage sites             |                              |        |
| Maximum build per<br>year       |                                                         |                              |        |
| Current CAPEX                   | 559 £/kW<br>+ 96 £/kWh                                  | Real 2016<br>1.5 USD = 1 GBP | [15]   |
| Current OPEX                    | FOM 5.1 £/kW/year<br>VOM 0.23 £/MWh                     | Real 2016<br>1.5 USD = 1 GBP | [15]   |
| Future CAPEX                    | Mature technology - likely to remain<br>fairly constant |                              |        |
| Future OPEX                     | Mature technology - likely to remain<br>fairly constant |                              |        |



| Table 31 CAES det               |                                                                          |                                                            |        |
|---------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------|--------|
| Parameter                       | Value                                                                    | Notes                                                      | Source |
| Туре                            | Mechanical                                                               |                                                            |        |
| Input                           | Electricity                                                              |                                                            |        |
| Output                          | Electricity                                                              |                                                            |        |
| Maturity                        | Medium                                                                   | Adiabatic overground generation is in R&D phase (immature) |        |
| Effective capacity (%)          | 100%                                                                     |                                                            | [15]   |
| Round trip efficiency<br>(%)    | 70%                                                                      | Assume underground CAES                                    | [15]   |
| Temporal losses<br>(%/day)      | 0%                                                                       |                                                            | [16]   |
| Response time                   | 5-15mins                                                                 |                                                            | [16]   |
| Duration                        | 2-20hours                                                                |                                                            | [15]   |
| Inject/withdraw rate            | 100-300MW                                                                |                                                            | [16]   |
| Energy density by<br>mass       | 30-60Wh/kg                                                               |                                                            | [16]   |
| Energy density by volume / area |                                                                          |                                                            |        |
| Lifespan (full cycles)          | 25-40 years                                                              |                                                            | [16]   |
| Maximum build                   | Ideally situated in salt caverns -<br>above ground is far more expensive |                                                            |        |
| Maximum build per               |                                                                          |                                                            |        |
| year                            |                                                                          |                                                            |        |
| Current CAPEX                   | 617.5 £/kW                                                               | Real 2016                                                  | [15]   |
|                                 | +22.6 £/kWh                                                              | 1.5 USD = 1 GBP                                            |        |
| Current OPEX                    | FOM 3.2 £/kW/year<br>VOM 2.53 £/MWh                                      | Real 2016<br>1.5 USD = 1 GBP                               | [15]   |
| Future CAPEX                    | Salt cavern situated CAES unlikely to                                    | 1.5 03D - 1 GBP                                            | [17]   |
|                                 | reduce in cost. Above ground may                                         |                                                            | [17]   |
|                                 | see cost savings, though likely to                                       |                                                            |        |
|                                 | remain expensive.                                                        |                                                            |        |
| Future OPEX                     | Salt cavern situated CAES unlikely to                                    |                                                            | [17]   |
|                                 | reduce in cost. Above ground may                                         |                                                            |        |
|                                 | see cost savings, though likely to                                       |                                                            |        |
|                                 | remain expensive.                                                        |                                                            |        |

#### Table 31 CAES details

| D1.1 Energy Storage Mapping Report



| uetans                                                                        |                                                                                                                                                                                                                                                                               |                      |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Value                                                                         | Notes                                                                                                                                                                                                                                                                         | Source               |
| Mechanical                                                                    |                                                                                                                                                                                                                                                                               |                      |
| Electricity                                                                   |                                                                                                                                                                                                                                                                               |                      |
| Electricity                                                                   |                                                                                                                                                                                                                                                                               |                      |
| Medium                                                                        |                                                                                                                                                                                                                                                                               |                      |
| 100%                                                                          |                                                                                                                                                                                                                                                                               | [15]                 |
| 85%                                                                           |                                                                                                                                                                                                                                                                               | [15]                 |
| 20%-100% per day                                                              | If not used losses within day some<br>flywheels could lose all stored<br>potential energy                                                                                                                                                                                     | [16]                 |
| seconds                                                                       |                                                                                                                                                                                                                                                                               | [16]                 |
| Typical 15s-15mins, but with some developments looking at duration of 1+ hour |                                                                                                                                                                                                                                                                               | [16]<br>[54]         |
| 0.002-20MW                                                                    |                                                                                                                                                                                                                                                                               | [16]                 |
| 5-130Wh/kg                                                                    |                                                                                                                                                                                                                                                                               | [16]                 |
|                                                                               |                                                                                                                                                                                                                                                                               |                      |
| 20 years                                                                      |                                                                                                                                                                                                                                                                               | [16]                 |
|                                                                               |                                                                                                                                                                                                                                                                               |                      |
|                                                                               |                                                                                                                                                                                                                                                                               |                      |
| 668 £/kW<br>+3982 £/kWh                                                       | Real 2016<br>1.5 USD = 1 GBP                                                                                                                                                                                                                                                  | [15]                 |
| FOM 4.47 £/kW/year<br>VOM 0.23£/MWh                                           | Real 2016<br>1.5 USD = 1 GBP                                                                                                                                                                                                                                                  | [15]                 |
| Limited reductions expected                                                   |                                                                                                                                                                                                                                                                               | [18]                 |
| Limited reductions expected                                                   |                                                                                                                                                                                                                                                                               | [18]                 |
|                                                                               | ValueMechanicalElectricityElectricityMedium100%85%20%-100% per daysecondsTypical 15s-15mins, but with some<br>developments looking at duration of<br>1+ hour0.002-20MW5-130Wh/kg20 years668 £/kW<br>+3982 £/kWhFOM 4.47 £/kW/year<br>VOM 0.23£/MWhLimited reductions expected | ValueNotesMechanical |

#### Table 32 Flywheel details



| Parameter                          | Value                            | Notes           | Source |
|------------------------------------|----------------------------------|-----------------|--------|
| Туре                               | Chemical                         |                 |        |
| Input                              | Electricity                      |                 |        |
| Output                             | Electricity                      |                 |        |
| Maturity                           | Medium                           |                 |        |
| Effective capacity (%)             | 80%                              |                 | [15]   |
|                                    |                                  |                 |        |
| Round trip efficiency<br>(%)       | 75%                              |                 | [15    |
| Temporal losses                    | 20% per day                      |                 | [16]   |
| (%/day)                            |                                  |                 |        |
| Response time                      | ~100 ms                          |                 | [19]   |
| Duration                           | hours                            |                 | [16]   |
| Inject/withdraw rate               | 0.5-50MW                         |                 | [16]   |
| Energy density by                  | 150-240Wh/kg                     |                 | [16]   |
| mass                               |                                  |                 |        |
| Energy density by<br>volume / area | 0.313 kWh/sq m                   |                 | [15]   |
| Lifespan (full cycles)             | 2000-4500 cycles, 10-15 years    |                 | [16]   |
| Maximum build                      |                                  |                 |        |
| Maximum build per                  |                                  |                 |        |
| year                               |                                  |                 |        |
| Current CAPEX                      | 431 £/kW                         | Real 2016       | [15]   |
| • · • • • • • •                    | +297 £/kWh usable capacity       | 1.5 USD = 1 GBP | [ ]    |
| Current OPEX                       | FOM 4.39 £/kW/year               | Real 2016       | [15]   |
| Fature CADEV                       | VOM 0.4 £/MWh                    | 1.5 USD = 1 GBP | [20]   |
| Future CAPEX                       | Limited cost reductions expected |                 | [20]   |
| Future OPEX                        | Limited cost reductions expected |                 | [20]   |

# Table 33 NaS Battery details

| D1.1 Energy Storage Mapping Report



| Parameter                       | Value                                  | Notes                                            | Source |
|---------------------------------|----------------------------------------|--------------------------------------------------|--------|
| Туре                            | Chemical                               | Various (e.g. Vanadium Redox or<br>Zinc Bromine) |        |
| Input                           | Electricity                            |                                                  |        |
| Output                          | Electricity                            |                                                  |        |
| Maturity                        | Immature                               |                                                  |        |
| Effective capacity (%)          | 100%                                   |                                                  | [15]   |
| Round trip efficiency<br>(%)    | 71%                                    |                                                  | [15]   |
| Temporal losses<br>(%/day)      | 0-10% per day                          |                                                  | [16]   |
| Response time                   | ~100 ms                                |                                                  | [19]   |
| Duration                        | hours                                  |                                                  | [16]   |
| Inject/withdraw rate            | 0.03-7MW                               |                                                  | [16]   |
| Energy density by<br>mass       | 75                                     |                                                  | [16]   |
| Energy density by volume / area | 0.201 kWh/sq m                         |                                                  | [15]   |
| Lifespan (full cycles)          | 10000+ cycles, 5-20 years              |                                                  | [16]   |
| Maximum build                   |                                        |                                                  |        |
| Maximum build per<br>year       |                                        |                                                  |        |
| Current CAPEX                   | 738 £/kW<br>+546 £/kWh usable capacity | Vanadium Redox<br>Real 2016<br>1.5 USD = 1 GBP   | [15]   |
| Current OPEX                    | FOM 6.18 £/kW/year<br>VOM 0.96 £/MWh   | Vanadium Redox<br>Real 2016<br>1.5 USD = 1 GBP   | [15]   |
| Future CAPEX                    | Cost expected to half by 2020          | Vanadium Redox                                   | [20]   |
| Future OPEX                     |                                        |                                                  |        |
|                                 |                                        |                                                  |        |

#### Table 34 Flow battery storage details

| D1.1 Energy Storage Mapping Report



| Parameter                       | Value                                  | Notes                        | Source |
|---------------------------------|----------------------------------------|------------------------------|--------|
| Туре                            | Chemical                               |                              |        |
| Input                           | Electricity                            |                              |        |
| Output                          | Electricity                            |                              |        |
| Maturity                        | Medium                                 |                              |        |
| Effective capacity (%)          | 57%                                    |                              | [15]   |
| Round trip efficiency<br>(%)    | 89%                                    |                              | [15]   |
| Temporal losses<br>(%/day)      | 0.1-0.3% per day                       |                              | [16]   |
| Response time                   | ~100 ms                                |                              | [19]   |
| Duration                        | hours                                  |                              | [16]   |
| Inject/withdraw rate            | 0.001-50MW                             |                              | [16]   |
| Energy density by<br>mass       | 30-50Wh/kg                             |                              | [16]   |
| Energy density by volume / area | 0.295 kWh/sq m                         |                              | [15]   |
| Lifespan (full cycles)          | 100-1000 cycles, 3-15 years            |                              | [16]   |
| Maximum build                   |                                        |                              |        |
| Maximum build per<br>year       |                                        |                              |        |
| Current CAPEX                   | 907 £/kW<br>+757 £/kWh usable capacity | Real 2016<br>1.5 USD = 1 GBP | [15]   |
| Current OPEX                    | FOM 27.3 £/kW/year<br>VOM 1.16 £/MWh   | Real 2016<br>1.5 USD = 1 GBP | [15]   |
| Future CAPEX                    | Limited cost reductions expected       |                              | [20]   |
| Future OPEX                     |                                        |                              |        |

# Table 35 Advanced Lead-acid storage details

| D1.1 Energy Storage Mapping Report



| Parameter                       | Value                                   | Notes                        | Source |
|---------------------------------|-----------------------------------------|------------------------------|--------|
| Туре                            | Chemical                                |                              |        |
| Input                           | Electricity                             |                              |        |
| Output                          | Electricity                             |                              |        |
| Maturity                        | Medium                                  |                              |        |
| Effective capacity (%)          | 88%                                     |                              | [15]   |
| Round trip efficiency<br>(%)    | 89%                                     |                              | [15]   |
| Temporal losses<br>(%/day)      | 0.1-0.3% per day                        |                              | [16]   |
| Response time                   | ~100 ms                                 |                              | [19]   |
| Duration                        | hours                                   |                              | [16]   |
| Inject/withdraw rate            | 0.001-0.1MW                             |                              | [16]   |
| Energy density by<br>mass       | 75-250                                  |                              | [16]   |
| Energy density by volume / area | 0.308 kWh / sq m                        |                              | [15]   |
| Lifespan (full cycles)          | 1000-10000 cycles<br>5-15years          |                              | [16]   |
| Maximum build                   |                                         |                              |        |
| Maximum build per<br>year       |                                         |                              |        |
| Current CAPEX                   | 929 £/kW<br>+ 799 £/kWh usable capacity | Real 2016<br>1.5 USD = 1 GBP | [15]   |
| Current OPEX                    | FOM 13.34 £/kW/year<br>VOM 2.15 £/MWh   | Real 2016<br>1.5 USD = 1 GBP | [15]   |
| Future CAPEX                    | Cell costs to half by 2020              |                              | [20]   |
| Future OPEX                     |                                         |                              |        |

# Table 36 Li-ion Battery details

| D1.1 Energy Storage Mapping Report



| Parameter                          | Value                                    | Notes                        | Source     |
|------------------------------------|------------------------------------------|------------------------------|------------|
| Туре                               | Chemical                                 |                              |            |
| Input                              | Electricity                              |                              |            |
| Output                             | Electricity                              |                              |            |
| Maturity                           | Medium                                   |                              |            |
| Effective capacity (%)             | 90%                                      |                              | [21]       |
| Round trip efficiency<br>(%)       | 89%                                      |                              | [15]       |
| Temporal losses<br>(%/day)         | 0.1-0.3% per day                         |                              | [16]       |
| Response time                      | ~100 ms                                  |                              | [19]       |
| Duration                           | 1.7 - 5 hours (max size, 6kWh)           |                              | [21]       |
| Inject/withdraw rate               | 1.2MW                                    |                              | [21]       |
| Energy density by<br>mass          | 25-50 kWh/kg                             |                              | [21]       |
| Energy density by<br>volume / area | 7.58 - 22.8 kWh / sq m                   |                              | [21]       |
| Lifespan (full cycles)             | 1000-10000 cycles<br>5-15years           |                              | [16]       |
| Maximum build                      |                                          |                              |            |
| Maximum build per<br>year          |                                          |                              |            |
| Current CAPEX                      | 1000 £/kW<br>+ 400 £/kWh usable capacity | Real 2016<br>1.5 USD = 1 GBP | [21], [22] |
| Current OPEX                       |                                          |                              |            |
| Future CAPEX                       | Costs to half by 2020                    |                              | [22]       |
| Future OPEX                        |                                          |                              |            |

# Table 37 Home battery storage (Li-ion) details

| D1.1 Energy Storage Mapping Report



|                                 | Value                                                | Neter                                                                                                        | Courses |
|---------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------|
| Parameter                       | value                                                | Notes                                                                                                        | Source  |
| Туре                            | Electrical                                           |                                                                                                              |         |
| Input                           | Electricity                                          |                                                                                                              |         |
| Output                          | Electricity                                          |                                                                                                              |         |
| Maturity                        | Immature                                             |                                                                                                              |         |
| Effective capacity (%)          | 100%                                                 |                                                                                                              |         |
| Round trip efficiency<br>(%)    | 85-98%                                               |                                                                                                              | [16]    |
| Temporal losses<br>(%/day)      | 2-40% per day                                        |                                                                                                              | [16]    |
| Response time                   | ms                                                   |                                                                                                              | [16]    |
| Duration                        | ms-1hour                                             |                                                                                                              | [16]    |
| Inject/withdraw rate            | 0.01-1MW                                             |                                                                                                              | [16]    |
| Energy density by<br>mass       | 0.1-15Wh/kg                                          |                                                                                                              | [16]    |
| Energy density by volume / area |                                                      |                                                                                                              |         |
| Lifespan (full cycles)          | 20+ years                                            |                                                                                                              | [16]    |
| Maximum build                   |                                                      |                                                                                                              |         |
| Maximum build per<br>year       |                                                      |                                                                                                              |         |
| Current CAPEX                   | 80-400 £/kW<br>or >10000 £/kWh                       | Real 2016<br>1.25 EUR = 1 GBP<br>* assume this is storage cost only,<br>no installation and connection costs | [19]    |
| Current OPEX                    |                                                      |                                                                                                              |         |
| Future CAPEX                    | if deployment increases, reductions in cost expected |                                                                                                              |         |
| Future OPEX                     | if deployment increases, reductions in cost expected |                                                                                                              |         |

#### Table 38 Super capacitor details

| D1.1 Energy Storage Mapping Report



| Parameter                       | Value                                                | Notes                                                                                                        | Source |
|---------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------|
| Туре                            | Electrical                                           |                                                                                                              |        |
| Input                           | Electricity                                          |                                                                                                              |        |
| Output                          | Electricity                                          |                                                                                                              |        |
| Maturity                        | Immature                                             |                                                                                                              |        |
| Effective capacity (%)          | 100%                                                 |                                                                                                              |        |
| Round trip efficiency<br>(%)    | 95%                                                  |                                                                                                              | [16]   |
| Temporal losses<br>(%/day)      | 10-15% per day                                       |                                                                                                              | [16]   |
| Response time                   | ms                                                   |                                                                                                              | [16]   |
| Duration                        | ms-5mins                                             |                                                                                                              | [16]   |
| Inject/withdraw rate            | 0.01-10MW                                            |                                                                                                              | [16]   |
| Energy density by<br>mass       | 0.5-5 Wh/kg                                          |                                                                                                              | [16]   |
| Energy density by volume / area |                                                      |                                                                                                              |        |
| Lifespan (full cycles)          | 10000 cycles, 20 years                               |                                                                                                              | [16]   |
| Maximum build                   |                                                      |                                                                                                              |        |
| Maximum build per<br>year       |                                                      |                                                                                                              |        |
| Current CAPEX                   | 240 £/kW<br>or >10000 £/kWh                          | Real 2016<br>1.25 EUR = 1 GBP<br>* assume this is storage cost only,<br>no installation and connection costs | [19]   |
| Current OPEX                    |                                                      |                                                                                                              |        |
| Future CAPEX                    | if deployment increases, reductions in cost expected |                                                                                                              |        |
| Future OPEX                     | if deployment increases, reductions in cost expected |                                                                                                              |        |

# Table 39 Superconductive magnetic energy storage details

| D1.1 Energy Storage Mapping Report



| Parameter                       | Value              | Notes                                                                                                                          | Source |
|---------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------|--------|
| Туре                            | Electrical         |                                                                                                                                |        |
| Input                           | Electricity        |                                                                                                                                |        |
| Output                          | Electricity        |                                                                                                                                |        |
| •                               | ,                  |                                                                                                                                |        |
| Maturity                        | Moderate           | Individual components mature,<br>integration for LAES more novel                                                               | 55     |
| Effective capacity (%)          |                    |                                                                                                                                |        |
| Round trip efficiency<br>(%)    | 60-70% round trip  |                                                                                                                                | 55     |
| Temporal losses<br>(%/day)      | 0.2% / day         |                                                                                                                                | 55     |
| Response time                   | ~1+ minute         | If cryogenic feed pumps kept cold<br>and turbine oil warm                                                                      | 55     |
| Duration                        | Hours              | Power and capacity scalable through<br>use of additional power turbines<br>and storage tanks, potentially 500<br>MWh at 100 MW | 55     |
| Inject/withdraw rate            | 100kW-10s/100s MWs | 300kW / 2.5 MWh pilot in 2011 in UK ,                                                                                          | 55     |
| Energy density by<br>mass       | 0.1 – 0.1 kWh/kg   |                                                                                                                                | 55     |
| Energy density by volume / area |                    |                                                                                                                                |        |
| Lifespan (full cycles)          | ~25 years          | For all major individual components                                                                                            | 55     |
| Maximum build                   |                    | Scalable                                                                                                                       |        |
| Maximum build per<br>year       |                    |                                                                                                                                |        |
| Current CAPEX                   | ~£1800/kW          | First of a kind and 'mature' cost<br>estimates for 20MW/80MWh                                                                  | 55     |
| Current OPEX                    |                    | system. All in cost per kW including                                                                                           |        |
| Future CAPEX                    | ~£1000/kW          | balance of plant.                                                                                                              |        |
| Future OPEX                     |                    |                                                                                                                                |        |

# Table 40 Liquid air energy storage details

| D1.1 Energy Storage Mapping Report



# B.2 Gas and hydrogen

# Table 41 Liquefied Natural Gas (LNG)

| Parameter                       | Value                                 | Notes                                                  | Source |
|---------------------------------|---------------------------------------|--------------------------------------------------------|--------|
| Туре                            | Gas                                   |                                                        |        |
| Input                           | Gas                                   |                                                        |        |
| Output                          | Gas                                   |                                                        |        |
| Maturity                        | Mature                                |                                                        |        |
| Effective capacity (%)          | 'Heel' of ~5-10%                      |                                                        | [28]   |
| Round trip efficiency (%)       |                                       | ~1.5-2% of send-out gas used in regasification process | [30]   |
| Temporal losses (%/day)         |                                       |                                                        |        |
| Response time                   | Hours                                 | Very high rates of deliverability                      |        |
| Duration                        |                                       |                                                        |        |
| Inject/withdraw rate            | ~5 mcm/d                              |                                                        | [28]   |
| Energy density by mass          | ~32 mcm typical facility but scalable |                                                        | [28]   |
| Energy density by volume / area |                                       |                                                        |        |
| Lifespan (full cycles)          | ~20-25 years                          | Expected                                               |        |
| Maximum build                   | Scalable                              |                                                        |        |
| Maximum build per year          |                                       |                                                        |        |
| Current CAPEX                   |                                       |                                                        |        |
| Current OPEX                    |                                       |                                                        |        |
| Future CAPEX                    |                                       |                                                        |        |
| Future OPEX                     |                                       |                                                        |        |



| Parameter                       | Value                                                     | Notes                                                                                | Source |
|---------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------|--------|
|                                 |                                                           |                                                                                      |        |
| Туре                            | Gas                                                       | Depleted field / aquifer                                                             |        |
| Input                           | Gas                                                       |                                                                                      |        |
| Output                          | Gas                                                       |                                                                                      |        |
| Maturity                        | Mature                                                    |                                                                                      |        |
| Effective capacity (%)          | Site specific but e.g. 50% cushion gas requirement        |                                                                                      |        |
| Round trip efficiency (%)       | Negligible loss rates outside of accident                 |                                                                                      |        |
| Temporal losses (%/day)         |                                                           |                                                                                      |        |
| Response time                   | hours                                                     | but relatively few cycles across the<br>year (e.g. 1-2) due to seasonal<br>arbitrage |        |
| Duration                        | Capacity site specific but circa. 500 mcm                 |                                                                                      | [28]   |
| Inject/withdraw rate            | Deliverability site<br>specific but~5 mcm/d               |                                                                                      | [28]   |
| Energy density by mass          |                                                           |                                                                                      |        |
| Energy density by volume / area |                                                           |                                                                                      |        |
| Lifespan (full cycles)          | 40+ years                                                 |                                                                                      |        |
| Maximum build                   | Depends on geology                                        | 11 projects with planning<br>permission with ~14 bcm capacity<br>(mix of LRS/SRS)    | [29]   |
| Maximum build per year          |                                                           |                                                                                      |        |
| Current CAPEX                   | Highly site specific but<br>~€0.4-0.7 / cm of<br>storage  | Excludes cushion gas                                                                 | [28]   |
| Current OPEX                    | Highly site specific but<br>~€0.01-0.8 / cm of<br>storage |                                                                                      | [28]   |
| Future CAPEX                    |                                                           |                                                                                      |        |
| Future OPEX                     |                                                           |                                                                                      |        |

#### Table 42 Long Range Storage (LRS)

| D1.1 Energy Storage Mapping Report



| Parameter                       | Value                                                       | Notes                                                                             | Source |
|---------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|--------|
| Туре                            | Gas                                                         | Salt cavity                                                                       |        |
| Input                           | Gas                                                         | ,                                                                                 |        |
| Output                          | Gas                                                         |                                                                                   |        |
| Maturity                        | Mature                                                      |                                                                                   |        |
| Effective capacity (%)          | Site specific but e.g. 20% cushion gas requirement          |                                                                                   | [28]   |
| Round trip efficiency (%)       | Negligible loss rates<br>outside of accident                |                                                                                   |        |
| Temporal losses (%/day)         |                                                             |                                                                                   |        |
| Response time                   | hours                                                       |                                                                                   |        |
| Duration                        | Capacity site specific but circa. 500 mcm                   |                                                                                   | [28]   |
| Inject/withdraw rate            | Deliverability site<br>specific but ~20+ mcm/d              |                                                                                   | [28]   |
| Energy density by mass          |                                                             |                                                                                   |        |
| Energy density by volume / area |                                                             |                                                                                   |        |
| Lifespan (full cycles)          | 40+ years                                                   |                                                                                   |        |
| Maximum build                   | Depends on geology                                          | 11 projects with planning<br>permission with ~14 bcm capacity<br>(mix of LRS/SRS) | [29]   |
| Maximum build per year          |                                                             |                                                                                   |        |
| Current CAPEX                   | Highly site specific but<br>~€0.8-1.2 / cm of<br>storage    | Excludes cushion gas                                                              | [28]   |
| Current OPEX                    | Highly site specific but<br>~€0.01-0.025 / cm of<br>storage |                                                                                   | [28]   |
| Future CAPEX                    |                                                             |                                                                                   |        |
| Future OPEX                     |                                                             |                                                                                   |        |

#### Table 43 Short Range Storage (SRS)

| D1.1 Energy Storage Mapping Report



| Parameter                       | Value                                                                                                        | Notes                                                                                 | Source |
|---------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------|
| Туре                            | Gas                                                                                                          | Pipeline                                                                              |        |
| Input                           | Gas                                                                                                          |                                                                                       |        |
| Output                          | Gas                                                                                                          |                                                                                       |        |
| Maturity                        | Mature                                                                                                       |                                                                                       |        |
| Effective capacity (%)          |                                                                                                              |                                                                                       |        |
| Round trip efficiency (%)       | Typical losses in range of<br>1-2% (volume) on<br>transmission network                                       |                                                                                       |        |
| Temporal losses (%/day)         |                                                                                                              |                                                                                       |        |
| Response time                   | Sub-hour                                                                                                     |                                                                                       |        |
| Duration                        | Hours                                                                                                        |                                                                                       |        |
| Inject/withdraw rate            | Current linepack swings<br>are ~20mcm per day.<br>Range of linepack values<br>for 2015-16 was 317-<br>367mcm | Function of pipe network topology<br>and injection / withdrawal across<br>the network | [12]   |
| Energy density by mass          |                                                                                                              |                                                                                       |        |
| Energy density by volume / area |                                                                                                              |                                                                                       |        |
| Lifespan (full cycles)          |                                                                                                              |                                                                                       |        |
| Maximum build                   |                                                                                                              |                                                                                       |        |
| Maximum build per year          |                                                                                                              |                                                                                       |        |
| Current CAPEX                   |                                                                                                              |                                                                                       |        |
| Current OPEX                    |                                                                                                              |                                                                                       |        |
| Future CAPEX                    |                                                                                                              |                                                                                       |        |
| Future OPEX                     |                                                                                                              |                                                                                       |        |

#### Table 44 Line-packing

| D1.1 Energy Storage Mapping Report



| Parameter                       | Value                                         | Notes                                             | Source     |
|---------------------------------|-----------------------------------------------|---------------------------------------------------|------------|
| Туре                            | Hydrogen – Geological                         | Salt cavern                                       |            |
| Input                           | Hydrogen                                      |                                                   |            |
| Output                          | Hydrogen                                      |                                                   |            |
| Maturity                        | Mature                                        |                                                   |            |
| Effective capacity (%)          | 50%-90% cushion gas                           | Higher requirement in gas of faster cycling rates | [31], [25] |
| Round trip efficiency (%)       | 2.5%                                          | Compression from ~20-60 Barg to 270               | [31], [25] |
| Temporal losses (%/day)         |                                               |                                                   |            |
| Response time                   | hours                                         |                                                   |            |
| Duration                        | Site specific but ~70k-                       |                                                   | [31], [25] |
| Inject/withdraw rate            | - 300km3, with pressure range of ~45-270 bara |                                                   |            |
| Energy density by mass          |                                               |                                                   |            |
| Energy density by volume / area |                                               |                                                   |            |
| Lifespan (full cycles)          | 40+ years                                     |                                                   | [25]       |
| Maximum build                   | Depends on geology                            | ~3 TWh limit by 2050 based on build rate in ESME  | [25]       |
| Maximum build per year          |                                               |                                                   |            |
| Current CAPEX                   | £9.5/kWh                                      |                                                   | [31], [25] |
| Current OPEX                    | Negligible                                    |                                                   | [25]       |
| Future CAPEX                    | Assume to be similar                          |                                                   | [25]       |
| Future OPEX                     | 1                                             |                                                   |            |

# Table 45 Geological hydrogen storage

| D1.1 Energy Storage Mapping Report



| Parameter                       | Value                                                                           | Notes                                                                         | Source |
|---------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------|
| Туре                            | Hydrogen – Bulk                                                                 | Compressed, Cold, Liquid stored at<br>ambient temperatures through to<br><20K |        |
| Input                           | Hydrogen                                                                        |                                                                               |        |
| Output                          | Hydrogen                                                                        |                                                                               |        |
| Maturity                        | Mature                                                                          |                                                                               |        |
| Effective capacity (%)          |                                                                                 |                                                                               |        |
| Round trip efficiency (%)       | ~30% energy required for liquefaction                                           |                                                                               |        |
| Temporal losses (%/day)         | 0.25% / day                                                                     |                                                                               | [32]   |
| Response time                   | Hours                                                                           |                                                                               |        |
| Duration                        | ~366 kgH2 for typical<br>compressed system<br>~1m kgH2 typical liquid<br>system | Scalable                                                                      | [32]   |
| Inject/withdraw rate            | Dependent on size of<br>compressor                                              |                                                                               |        |
| Energy density by mass          |                                                                                 |                                                                               |        |
| Energy density by volume / area | ~30 kg/m <sup>3</sup> for a 700 bar<br>high                                     | Depends on pressure (ranges from ~50bar through to 700/1000 bar)              | [32]   |
| Lifespan (full cycles)          | ~70 kg/m3 for liquid<br>20                                                      |                                                                               | [32]   |
| Maximum build                   | Scalable                                                                        |                                                                               |        |
| Maximum build per year          | Scalable                                                                        |                                                                               |        |
| Current CAPEX                   | ~£1077/kgH2<br>compressed                                                       |                                                                               | [32]   |
|                                 | ~£26/kgH2                                                                       |                                                                               |        |
| Current OPEX                    | ~30% energy required<br>for liquefaction                                        |                                                                               | [32]   |
| Future CAPEX                    | Likely to be similar                                                            |                                                                               | [32]   |
| Future OPEX                     | Energy for liquefaction<br>could be reduced by<br>~1/2                          |                                                                               | [32]   |

# Table 46 Bulk storage

| D1.1 Energy Storage Mapping Report



| Parameter                       | Value                                                                                                                                | Notes                                                                                     | Source |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------|
| Туре                            | Hydrogen materials<br>based                                                                                                          | Metal hydride (e.g. magnesium<br>based)                                                   |        |
|                                 |                                                                                                                                      | Liquid organic hydrogen carriers<br>(toluene/methylcyclohexane-based,<br>Dibenzyltoluene) |        |
| Input                           |                                                                                                                                      |                                                                                           |        |
| Output                          |                                                                                                                                      |                                                                                           |        |
| Maturity                        | Immature                                                                                                                             | Very early R&D                                                                            |        |
| Effective capacity (%)          |                                                                                                                                      |                                                                                           |        |
| Round trip efficiency (%)       | ~30% hydrogen energy<br>required for withdrawal<br>but comparable thermal<br>energy released during<br>charging<br>~25% required for |                                                                                           | [32]   |
|                                 | dehydrogenation<br>(withdrawal), but<br>comparable thermal<br>energy released during<br>hydrogenation step                           |                                                                                           |        |
| Temporal losses (%/day)         |                                                                                                                                      |                                                                                           |        |
| Response time                   | hours                                                                                                                                |                                                                                           |        |
| Duration                        |                                                                                                                                      | Scalable                                                                                  |        |
| Inject/withdraw rate            | Assumed to be 'slow' for<br>metal-hydride<br>Potentially 'faster' for                                                                |                                                                                           | [32]   |
|                                 | liquid with catalyst                                                                                                                 |                                                                                           |        |
| Energy density by mass          |                                                                                                                                      |                                                                                           |        |
| Energy density by volume / area | ~60 kg per m³ liquid<br>carrier                                                                                                      |                                                                                           |        |
| Lifespan (full cycles)          |                                                                                                                                      |                                                                                           |        |
| Maximum build                   |                                                                                                                                      |                                                                                           |        |
| Maximum build per year          |                                                                                                                                      |                                                                                           |        |
| Current CAPEX                   | Unclear – very early                                                                                                                 |                                                                                           |        |
| Current OPEX                    | - stage R&D                                                                                                                          |                                                                                           |        |
| Future CAPEX                    | "Not foreseeable                                                                                                                     |                                                                                           | [32]   |
| Future OPEX                     | whether [either] will<br>play a significant role in<br>future hydrogen<br>infrastructure"                                            |                                                                                           |        |

#### Table 47 Materials-based

| D1.1 Energy Storage Mapping Report



# B.3 Heat

#### Table 48 Underground thermal energy storage

| Parameter                       | Value                                                                                                                                               | Notes                                                                                                              | Source |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------|
| Туре                            | Sensible Heat Storage                                                                                                                               | Various types – Tank (water),<br>borehole (e.g. clay, sand, rock),<br>aquifer (water), cavern/pit (rock,<br>water) |        |
| Input                           | Heat                                                                                                                                                |                                                                                                                    |        |
| Output                          | Heat                                                                                                                                                |                                                                                                                    |        |
| Maturity                        | Moderate                                                                                                                                            | Primarily system integration<br>challenges                                                                         | [23]   |
| Effective capacity (%)          |                                                                                                                                                     |                                                                                                                    |        |
| Round trip efficiency (%)       |                                                                                                                                                     |                                                                                                                    |        |
| Temporal losses (%/day)         | Key function of store<br>radius, insulation, delta<br>to ambient temperature<br>next to store. Can be<br><0.1%/hour for stores<br>with large radius |                                                                                                                    | [23]   |
| Response time                   | Hours                                                                                                                                               | UTES often linked to heat pumps to extract heat from store                                                         |        |
| Duration                        | Months                                                                                                                                              |                                                                                                                    |        |
| Inject/withdraw rate            | Function of heat<br>exchanger and size of<br>supply source                                                                                          |                                                                                                                    |        |
| Energy density by mass          |                                                                                                                                                     |                                                                                                                    |        |
| Energy density by volume / area | 1.16kWh/m3/K (water)                                                                                                                                |                                                                                                                    |        |
| Lifespan (full cycles)          |                                                                                                                                                     |                                                                                                                    |        |
| Maximum build                   | Site specific<br>considerations,<br>particularly when using<br>existing geology<br>One of largest in<br>Germany is ~75,000m3                        |                                                                                                                    |        |
| Maximum build per year          |                                                                                                                                                     |                                                                                                                    |        |
| Current CAPEX                   | Highly site and<br>technology specific, but                                                                                                         |                                                                                                                    | [23]   |
| Current OPEX                    | strong decreasing costs<br>at large sizes – e.g. pit<br>store with 75k m3 of<br>water at ~€30/m3 to<br>300m3 tank at<br>~€470/m3                    |                                                                                                                    |        |
| Future CAPEX                    | Likely to be relatively<br>limited decline as focus<br>on systems integration                                                                       |                                                                                                                    |        |
| Future OPEX                     | -,                                                                                                                                                  |                                                                                                                    | 1      |

<sup>|</sup> D1.1 Energy Storage Mapping Report

Baringa Partners LLP is a Limited Liability Partnership registered in England and Wales with registration number OC303471 and with registered offices at 3rd Floor, Dominican Court, 17 Hatfields, London SE18DJ UK.



| Parameter                       | Value                                                                                                                                               | Notes      | Source |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|
| Туре                            | Sensible Heat Storage                                                                                                                               | Water tank |        |
| Input                           | Heat                                                                                                                                                |            |        |
| Output                          | Heat                                                                                                                                                |            |        |
| Maturity                        | Mature                                                                                                                                              |            |        |
| Effective capacity (%)          |                                                                                                                                                     |            |        |
| Round trip efficiency (%)       |                                                                                                                                                     |            |        |
| Temporal losses (%/day)         | Key function of store<br>radius, insulation, delta<br>to ambient temperature<br>next to store. Can be<br><0.1%/hour for stores<br>with large radius |            | [23]   |
| Response time                   | Sub-hour                                                                                                                                            |            |        |
| Duration                        | Hours-days                                                                                                                                          |            |        |
| Inject/withdraw rate            | Function of heat<br>exchanger and size of<br>supply source                                                                                          |            |        |
| Energy density by mass          |                                                                                                                                                     |            |        |
| Energy density by volume / area | 1.16kWh/m3/K (water)                                                                                                                                |            |        |
| Lifespan (full cycles)          |                                                                                                                                                     |            |        |
| Maximum build                   | Function of heat                                                                                                                                    |            |        |
| Maximum build per year          | network deployment                                                                                                                                  |            |        |
| Current CAPEX                   | £36k-46k/MWh                                                                                                                                        |            | [24]   |
| Current OPEX                    | Negligible                                                                                                                                          |            |        |
| Future CAPEX                    | Mature unlikely to be<br>further significant<br>reductions                                                                                          |            |        |
| Future OPEX                     | Negligible                                                                                                                                          |            |        |

# Table 49 District heat network accumulator / buffer store

| D1.1 Energy Storage Mapping Report



| Parameter                       | Value                                                                                                                                           | Notes                  | Source |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------|
| Туре                            | Sensible Heat Storage                                                                                                                           | Water tank             |        |
| Input                           | Heat                                                                                                                                            |                        |        |
| Output                          | Heat                                                                                                                                            |                        |        |
| Maturity                        | Mature                                                                                                                                          |                        |        |
| Effective capacity (%)          |                                                                                                                                                 |                        |        |
| Round trip efficiency (%)       | 50-90% over typical daily<br>cycle (depending on<br>insulation) but losses<br>time dependent                                                    |                        |        |
| Temporal losses (%/day)         | Key function of store<br>radius, insulation, delta<br>to ambient temperature<br>next to store. Can be<br><1.0%/hour for well<br>insulated store |                        | [25]   |
| Response time                   | Sub-hour                                                                                                                                        |                        |        |
| Duration                        | Hours                                                                                                                                           |                        |        |
| Inject/withdraw rate            | Function of heat<br>exchanger and size of<br>supply source                                                                                      |                        |        |
| Energy density by mass          |                                                                                                                                                 |                        |        |
| Energy density by volume / area | 1.16kWh/m3/K (water)                                                                                                                            |                        |        |
| Lifespan (full cycles)          | ~15 years average 1<br>cycle per day                                                                                                            |                        | [25]   |
| Maximum build                   | Function of building size,                                                                                                                      |                        |        |
| Maximum build per year          | e.g. typical 100-200l tank<br>for smaller size domestic<br>buildings                                                                            |                        |        |
| Current CAPEX                   | £4.3/kWh                                                                                                                                        | Energy stored at ~60°C | [25]   |
| Current OPEX                    | Negligible                                                                                                                                      |                        |        |
| Future CAPEX                    | Unlikely to be significant reductions as mature                                                                                                 |                        |        |
| Future OPEX                     | reductions as mature                                                                                                                            |                        |        |

# Table 50 Building scale hot water storage

| D1.1 Energy Storage Mapping Report



| Parameter                       | Value                                                    | Notes   | Source               |
|---------------------------------|----------------------------------------------------------|---------|----------------------|
| Туре                            | Sensible Heat Storage                                    | Ceramic |                      |
| Input                           | Heat                                                     |         |                      |
| Output                          | Heat                                                     |         |                      |
| Maturity                        | Mature                                                   |         |                      |
| Effective capacity (%)          |                                                          |         |                      |
| Round trip efficiency (%)       |                                                          |         |                      |
| Temporal losses (%/day)         |                                                          |         |                      |
| Response time                   | Sub-hour                                                 |         |                      |
| Duration                        | ~7-hours                                                 |         | [26]                 |
| Inject/withdraw rate            | Limited by power rating<br>of circuit (~1kW to<br>3.4kW) |         |                      |
| Energy density by mass          | ~5kWh/kg                                                 |         | [26]                 |
| Energy density by volume / area |                                                          |         |                      |
| Lifespan (full cycles)          | 10-15 years, winter only cycling                         |         |                      |
| Maximum build                   | Large domestic room<br>storage units ~12-24              |         | [26]                 |
| Maximum build per year          | kWh                                                      |         |                      |
| Current CAPEX                   | ~£250-£500 for small to<br>large units                   |         | Various retail sites |
| Current OPEX                    | Negligible                                               |         |                      |
| Future CAPEX                    | Unlikely to be significant                               |         |                      |
| Future OPEX                     | reductions as mature                                     |         |                      |

# Table 51 Building scale storage heaters

| D1.1 Energy Storage Mapping Report



| Parameter                       | Value                                                                                        | Notes                                                                                                                                                                                               | Source |
|---------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Туре                            | Sensible Heat Storage                                                                        | Range of materials being<br>investigated e.g. Na-acetate<br>Trihydrate, Paraffin, Erytritol                                                                                                         |        |
| Input                           | Heat                                                                                         |                                                                                                                                                                                                     |        |
| Output                          | Heat                                                                                         |                                                                                                                                                                                                     |        |
| Maturity                        | Moderate                                                                                     | Challenges involved in<br>commercialising PCM systems<br>operating in the temperature range<br>suitable for heat pumps, but<br>commercial systems expected to<br>become available in next few years | [27]   |
| Effective capacity (%)          |                                                                                              |                                                                                                                                                                                                     |        |
| Round trip efficiency (%)       | 50-90% over typical daily<br>cycle (depending on<br>insulation) but losses<br>time dependent |                                                                                                                                                                                                     | [27]   |
| Temporal losses (%/day)         |                                                                                              |                                                                                                                                                                                                     |        |
| Response time                   | Sub-hour                                                                                     |                                                                                                                                                                                                     |        |
| Duration                        | Hours                                                                                        |                                                                                                                                                                                                     |        |
| Inject/withdraw rate            | Function of heat<br>exchanger and size of<br>supply source                                   |                                                                                                                                                                                                     |        |
| Energy density by mass          | 50-150 kWh/t                                                                                 |                                                                                                                                                                                                     |        |
| Energy density by volume / area |                                                                                              |                                                                                                                                                                                                     |        |
| Lifespan (full cycles)          | ~15 years average 1<br>cycle per day                                                         | Assumed comparable to sensible heat storage                                                                                                                                                         |        |
| Maximum build                   | Similar to hot water storage tanks                                                           | Trade off saving space versus<br>additional energy ~3 time energy<br>density ~4 times likely cost                                                                                                   | [24]   |
| Maximum build per year          |                                                                                              |                                                                                                                                                                                                     |        |
| Current CAPEX                   |                                                                                              |                                                                                                                                                                                                     | [27]   |
| Current OPEX                    |                                                                                              |                                                                                                                                                                                                     |        |
| Future CAPEX                    | €10-50/kWh                                                                                   |                                                                                                                                                                                                     |        |
| Future OPEX                     | Negligible                                                                                   |                                                                                                                                                                                                     |        |

# Table 52 Building scale heat storage – Phase Change Material

| D1.1 Energy Storage Mapping Report



| <u>v</u>                        | istorage mermoener                                         | inear Energy storage                                                                                                                                       |        |
|---------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Parameter                       | Value                                                      | Notes                                                                                                                                                      | Source |
| Туре                            | Thermochemical energy storage                              | Range of materials being<br>investigated including microporous<br>materials (e.g. Aluminophosphate),<br>composite materials (e.g. Porous<br>salt hydrates) |        |
| Input                           | Heat                                                       |                                                                                                                                                            |        |
| Output                          | Heat                                                       |                                                                                                                                                            |        |
| Maturity                        | Immature                                                   | High cost, complexity and key R&D<br>challenges around materials and<br>reactor design                                                                     | [23]   |
| Effective capacity (%)          |                                                            |                                                                                                                                                            |        |
| Round trip efficiency (%)       | 75-100% over typical<br>cycle                              |                                                                                                                                                            | [27]   |
| Temporal losses (%/day)         |                                                            |                                                                                                                                                            |        |
| Response time                   | Sub-hour                                                   |                                                                                                                                                            |        |
| Duration                        | Hours                                                      |                                                                                                                                                            |        |
| Inject/withdraw rate            | Function of heat<br>exchanger and size of<br>supply source | Charging reaction temperatures also<br>vary significantly from ~90°C to<br>800+°C                                                                          | [23]   |
| Energy density by mass          | 120-250 kWh/t                                              |                                                                                                                                                            | [27]   |
| Energy density by volume / area |                                                            |                                                                                                                                                            |        |
| Lifespan (full cycles)          |                                                            |                                                                                                                                                            |        |
| Maximum build                   |                                                            |                                                                                                                                                            |        |
| Maximum build per year          |                                                            |                                                                                                                                                            |        |
| Current CAPEX                   |                                                            |                                                                                                                                                            |        |
| Current OPEX                    |                                                            |                                                                                                                                                            |        |
| Future CAPEX                    | €8-100/kWh                                                 |                                                                                                                                                            |        |
| Future OPEX                     | Negligible                                                 |                                                                                                                                                            |        |

# Table 53 Building scale heat storage – Thermochemical Energy Storage

| D1.1 Energy Storage Mapping Report



# Appendix C Competing flexible technologies details

# C.1 Electricity

| Table 54 | CCGT | (potentially with CCS) |  |
|----------|------|------------------------|--|
|----------|------|------------------------|--|

| Parameter               | Value                                                        | Notes                                                                                                                                                               | Source |
|-------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Туре                    | Thermodynamic                                                |                                                                                                                                                                     |        |
| Input                   | Natural gas                                                  |                                                                                                                                                                     |        |
| Output                  | Electricity                                                  |                                                                                                                                                                     |        |
| Maturity                | Mature (non CCS)                                             |                                                                                                                                                                     |        |
| Efficiency (%)          | 53%                                                          | On a Higher Heating Value basis.<br>Efficiency can increase if waste heat<br>is used into a heat network.<br>CCS variants ~5-10 percentage<br>points less efficient | [34]   |
| Response time           | ~3 hours from cold, secs<br>when spinning                    |                                                                                                                                                                     |        |
| Duration                | Unlimited                                                    |                                                                                                                                                                     |        |
| Typical capacity (MW)   | 400 MW                                                       |                                                                                                                                                                     |        |
| Lifespan (years)        | 30 years                                                     |                                                                                                                                                                     | [34]   |
| Maximum build           |                                                              |                                                                                                                                                                     |        |
| Maximum build (GW/year) | ~2 GW/year                                                   | GB-wide potential                                                                                                                                                   | [34]   |
| Key drivers of costs    | Price of natural gas &<br>CO2, cost of CCS<br>infrastructure |                                                                                                                                                                     |        |

| D1.1 Energy Storage Mapping Report



| Table | 55 | OCGT |
|-------|----|------|
|-------|----|------|

| Parameter              | Value                                 | Notes                            | Source |
|------------------------|---------------------------------------|----------------------------------|--------|
| Туре                   | Thermodynamic                         |                                  |        |
| Input                  | Natural gas                           |                                  |        |
| Output                 | Electricity                           |                                  |        |
| Maturity               | Mature                                |                                  |        |
| Effective capacity (%) | 100%                                  |                                  |        |
| Efficiency (%)         | 38%                                   | On a Higher Heating Value basis. | [34]   |
| Response time          | 15 mins from cold, secs when spinning |                                  |        |
| Duration               | Unlimited                             |                                  |        |
| Typical capacity (MW)  | 100 MW                                |                                  |        |
| Lifespan (years)       | 30 years                              |                                  | [34]   |
| Maximum build          |                                       |                                  |        |
| Maximum build rate     |                                       |                                  |        |
| Key drivers of costs   | Price of natural gas & CO2            |                                  |        |

# Table 56Coal (potentially with CCS)

| Parameter                    | Value                                                         | Notes                                                                                                                                                                                                            | Source |
|------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Туре                         | Thermodynamic                                                 |                                                                                                                                                                                                                  |        |
| Input                        | Coal                                                          | Based on PC coal and IGCC coal with & without CCS                                                                                                                                                                |        |
| Output                       | Electricity                                                   |                                                                                                                                                                                                                  |        |
| Maturity                     | Mature (non CCS)                                              |                                                                                                                                                                                                                  |        |
| Effective capacity (%)       | 100%                                                          |                                                                                                                                                                                                                  |        |
| Efficiency (%)               | 40-50%                                                        | On a Higher Heating Value basis.<br>Efficiency can increase if waste heat<br>is used into a heat network. IGCC<br>more efficient compared to PC coal.<br>CCS variants ~10-15 percentage<br>points less efficient | [34]   |
| Response time                | 5-6 hours from cold, secs when spinning                       |                                                                                                                                                                                                                  |        |
| Duration                     | Unlimited                                                     |                                                                                                                                                                                                                  |        |
| Typical capacity (MW)        | 400 MW                                                        |                                                                                                                                                                                                                  |        |
| Lifespan (years)             | 40 years                                                      | Across pulverized coal and<br>integrated gasification combined<br>cycle coal                                                                                                                                     | [34]   |
| Maximum build                |                                                               |                                                                                                                                                                                                                  |        |
| Maximum build rate (GW/year) | ~4 GW/year                                                    | Combines pulverized coal and<br>integrated gasification combined<br>cycle coal GB-wide potential                                                                                                                 | [34]   |
| Key drivers of costs         | Price of natural coal &<br>CO2, cost of CCs<br>infrastructure |                                                                                                                                                                                                                  |        |

| D1.1 Energy Storage Mapping Report



| Parameter                    | Value                                  | Notes                                                              | Source |
|------------------------------|----------------------------------------|--------------------------------------------------------------------|--------|
| Туре                         | Thermodynamic                          |                                                                    |        |
| Input                        | Uranium                                |                                                                    |        |
| Output                       | Electricity                            |                                                                    |        |
| Maturity                     | Moderate                               | For new build EPR                                                  |        |
| Effective capacity (%)       | 100%                                   |                                                                    |        |
| Efficiency (%)               | 33%                                    | Efficiency can increase if waste heat is used into a heat network. | [35]   |
| Response time                | 48 hours from cold, secs when spinning |                                                                    |        |
| Duration                     | Unlimited                              |                                                                    |        |
| Typical capacity (MW)        | 1,600 MW                               | For new build EPR                                                  |        |
| Lifespan (years)             | 50 years                               |                                                                    | [34]   |
| Maximum build (GW)           | 39.8 GW                                | GB-wide potential                                                  | [34]   |
| Maximum build rate (MW/year) | 500 MW/year                            | GB-wide potential                                                  | [34]   |
| Key drivers of costs         | Сарех                                  |                                                                    |        |

#### Table 57 New Nuclear

#### Table 58Diesel engine

| Parameter              | Value                                  | Notes                 | Source |
|------------------------|----------------------------------------|-----------------------|--------|
| Туре                   | Thermodynamic                          |                       |        |
| Input                  | Diesel                                 |                       |        |
| Output                 | Electricity                            |                       |        |
| Maturity               | Mature                                 |                       |        |
| Effective capacity (%) | 100%                                   |                       |        |
| Efficiency (%)         | 20% to 45%                             | Depending on size     | [35]   |
| Response time          | <10 mins from cold, secs when spinning |                       |        |
| Duration               | Unlimited                              |                       |        |
| Typical capacity (MW)  | ~4-15 MW                               | Small, modular design | [38]   |
| Lifespan (years)       | 25 years                               |                       | [51]   |
| Maximum build          |                                        |                       |        |
| Maximum build per year |                                        |                       |        |
| Key drivers of costs   | Price of oil                           |                       |        |



| Parameter              | Value                                  | Notes                                                       | Source |
|------------------------|----------------------------------------|-------------------------------------------------------------|--------|
| Туре                   | Thermodynamic                          |                                                             |        |
| Input                  | Gas                                    |                                                             |        |
| Output                 | Electricity                            |                                                             |        |
| Maturity               | Mature                                 |                                                             |        |
| Effective capacity (%) | 100%                                   |                                                             |        |
| Efficiency (%)         | ~42-52%                                | Depending on size, high efficiency even under low part load | [51]   |
| Response time          | <10 mins from cold, secs when spinning |                                                             |        |
| Duration               | Unlimited                              |                                                             |        |
| Typical capacity (MW)  | ~4-30 MW                               | Small, modular design                                       | [51]   |
| Lifespan (years)       | 25 years                               |                                                             | [51]   |
| Maximum build          |                                        |                                                             |        |
| Maximum build per year |                                        |                                                             |        |
| Key drivers of costs   | Price of gas                           |                                                             |        |

#### Table 59 Gas engine

# Table 60Biomass (potentially with CCS)

|                              | ,                                                                 |                                                                                                            |        |
|------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------|
| Parameter                    | Value                                                             | Notes                                                                                                      | Source |
| Туре                         | Thermodynamic                                                     |                                                                                                            |        |
| Input                        | Wood chips                                                        |                                                                                                            |        |
| Output                       | Electricity                                                       |                                                                                                            |        |
| Maturity                     | Medium                                                            |                                                                                                            |        |
| Effective capacity (%)       | 100%                                                              |                                                                                                            |        |
| Efficiency (%)               | 33%                                                               | On a Gross Calorific Value basis.<br>Efficiency can increase if waste heat<br>is used into a heat network. | [34]   |
| Response time                | Comparable to coal ~5-6<br>hours from cold, secs<br>when spinning |                                                                                                            |        |
| Duration                     | Unlimited                                                         |                                                                                                            |        |
| Typical capacity (MW)        | 400 MW                                                            |                                                                                                            |        |
| Lifespan (years)             | 30 years                                                          | Across dedicated biomass<br>generation and IGCC biomass with<br>CCS                                        | [34]   |
| Maximum build                |                                                                   |                                                                                                            |        |
| Maximum build rate (GW/year) | 2 GW/year<br>+ 2 GW/year with CCS                                 |                                                                                                            | [34]   |
| Key drivers of costs         | Capex costs, costs of CCS infrastructure                          |                                                                                                            |        |

| D1.1 Energy Storage Mapping Report



#### Table 61 CHP

| Parameter                    | Value                                 | Notes                                                                             | Source     |
|------------------------------|---------------------------------------|-----------------------------------------------------------------------------------|------------|
| Туре                         | Thermodynamic                         |                                                                                   |            |
| Input                        | Natural gas, biomass,<br>diesel       |                                                                                   |            |
| Output                       | Electricity & heat                    |                                                                                   |            |
| Maturity                     | Mature                                |                                                                                   |            |
| Effective capacity (%)       | 100%                                  |                                                                                   |            |
| Efficiency (%)               | 10% to 40%                            | Electrical efficiency depends on size<br>and configuration of heat:power<br>ratio | [35], [34] |
| Response time                | 3 hours from cold, secs when spinning |                                                                                   |            |
| Duration                     | Unlimited                             |                                                                                   |            |
| Typical capacity (MW)        | 10kW to 50MW                          |                                                                                   |            |
| Lifespan (years)             | 30 years                              | Comparable to diesel generators                                                   | [34]       |
| Maximum build                |                                       |                                                                                   |            |
| Maximum build rate (MW/year) | 400 MW/year                           | This figure applies to biomass CHP only                                           | [34]       |
| Key drivers of costs         | Cost of gas, biomass                  |                                                                                   |            |

# Table 62Hydrogen turbine

| Parameter                    | Value                                    | Notes                           | Source |
|------------------------------|------------------------------------------|---------------------------------|--------|
| Туре                         | Thermodynamic                            |                                 |        |
| Input                        | Hydrogen gas                             |                                 |        |
| Output                       | Electricity                              |                                 |        |
| Maturity                     | Immature                                 |                                 |        |
| Effective capacity (%)       | 100%                                     |                                 |        |
| Efficiency (%)               | 50%                                      | On a Higher Heating Value basis | [34]   |
| Response time                | ~15mins from cold, secs<br>when spinning | Comparable to OCGT              |        |
| Duration                     | Unlimited                                |                                 |        |
| Typical capacity (MW)        | 100 MW                                   | Comparable to OCGT              |        |
| Lifespan (years)             | 20 years                                 |                                 | [34]   |
| Maximum build                |                                          |                                 |        |
| Maximum build rate (GW/year) | 2 GW/year                                |                                 | [34]   |
| Key drivers of costs         | Capex & price of<br>hydrogen             |                                 |        |

Baringa Partners LLP is a Limited Liability Partnership registered in England and Wales with registration number OC303471 and with registered offices at 3rd Floor, Dominican Court, 17 Hatfields, London SE18DJ UK.



| Parameter              | Value                                                            | Notes                                                            | Source                                          |
|------------------------|------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|
| Туре                   | Infrastructure                                                   |                                                                  |                                                 |
| Input                  | Electricity                                                      |                                                                  |                                                 |
| Output                 | Electricity                                                      |                                                                  |                                                 |
| Maturity               | Mature                                                           |                                                                  |                                                 |
| Effective capacity (%) | 97.4%                                                            | Based on UK-Netherlands<br>interconnection                       | [37]                                            |
| Efficiency (%)         | 98% to 99%                                                       | Based on IFA losses                                              | [39]                                            |
| Response time          | Seconds                                                          |                                                                  |                                                 |
| Duration               | Hours - dependent on<br>system conditions in<br>connected market |                                                                  |                                                 |
| Typical capacity (MW)  | 500 MW to 2,000 MW                                               |                                                                  |                                                 |
| Lifespan (years)       | 50 years to 60 years                                             | For HVDC                                                         | [40]                                            |
| Maximum build (GW)     | 4 GW at present, ~8GW projects proposed                          | Possibility for significant further interconnection beyond this. | See D1.2<br>deliverable for<br>list of projects |
| Maximum build per year |                                                                  |                                                                  |                                                 |
| Key drivers of costs   | Electricity prices in connected markets                          |                                                                  |                                                 |

#### Table 63 Interconnector

| D1.1 Energy Storage Mapping Report



| Parameter              | Value                                                                                                 | Notes                                                                                      | Source |
|------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------|
| Туре                   | Service                                                                                               |                                                                                            |        |
| Input                  | Electricity demand                                                                                    |                                                                                            |        |
| Output                 | Reduced or increased electricity demand                                                               |                                                                                            |        |
| Maturity               | Moderate                                                                                              |                                                                                            |        |
| Effective capacity (%) | 100%                                                                                                  |                                                                                            |        |
| Efficiency (%)         | 100%                                                                                                  |                                                                                            |        |
| Response time          | Hours if manual dispatch, seconds if automated                                                        |                                                                                            |        |
| Duration               | Highly dependent on<br>form of DSR, but<br>generally scale of several<br>hours                        |                                                                                            |        |
| Typical capacity (MW)  | ~100 kW to ~10 MW                                                                                     |                                                                                            |        |
| Lifespan (years)       | N/A                                                                                                   |                                                                                            |        |
| Maximum build (GW)     | 9 GW (distributed<br>generation), 10 GW<br>(I&C), 7 GW (heat<br>pumps), 1.2 GW (electric<br>vehicles) | GB-wide potential by 2035. These<br>figures are subject to a wide range<br>of uncertainty. | [41]   |
| Maximum build per year |                                                                                                       |                                                                                            |        |
| Key drivers of costs   | Consumer's willingness<br>to accept to<br>compensation for<br>temporary reduction in<br>'service'     |                                                                                            |        |

# Table 64 DSR (home, commercial and industrial)

| D1.1 Energy Storage Mapping Report



# C.2 Gas and hydrogen

#### Table 65Gas interconnectors

| Parameter              | Value                                 | Notes                                                                 | Source     |
|------------------------|---------------------------------------|-----------------------------------------------------------------------|------------|
| Туре                   | Infrastructure                        |                                                                       |            |
| Input                  | Natural gas                           |                                                                       |            |
| Output                 | Natural gas (at a different location) |                                                                       |            |
| Maturity               | Mature                                |                                                                       |            |
| Effective capacity (%) | 100%                                  |                                                                       |            |
| Efficiency (%)         | 0.2%                                  | Gas shrinkage on NTS                                                  | [42], [43] |
| Response time          | Hours                                 |                                                                       |            |
| Duration               | Hours to days                         |                                                                       |            |
| Typical capacity (GW)  | ~30 GW                                | Based on record gas imports to UK through the Interconnector pipeline | [44]       |
| Lifespan (years)       | 20 years to 60 years                  | For gas transmission assets                                           | [45]       |
| Maximum build          |                                       |                                                                       |            |
| Maximum build per year |                                       |                                                                       |            |
| Key drivers of costs   | Price of gas in connected markets     |                                                                       |            |

| D1.1 Energy Storage Mapping Report



| Parameter                  | Value                                                                                                                                                                                                                   | Notes                                                                                                               | Source |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------|
| Туре                       | Service                                                                                                                                                                                                                 |                                                                                                                     |        |
| Input                      | Natural gas                                                                                                                                                                                                             |                                                                                                                     |        |
| Output                     | Reduced gas demand                                                                                                                                                                                                      | Primarily large<br>industrial/commercial consumers or<br>gas power generation with distillate<br>back-up facilities |        |
| Maturity                   | Moderate                                                                                                                                                                                                                | Market mechanism to activate this<br>is still under trial design with<br>expected go-live in Q4 of 2016             | [52]   |
| Effective capacity (%)     | 100%                                                                                                                                                                                                                    |                                                                                                                     |        |
| Efficiency (%)             |                                                                                                                                                                                                                         |                                                                                                                     |        |
| Response time              | Hours                                                                                                                                                                                                                   |                                                                                                                     |        |
| Duration                   | 1 day up to 1 week                                                                                                                                                                                                      | But with potentially varying degrees of DSR moving up to 1 week                                                     |        |
| Typical capacity (mcm/day) | <ul> <li>Near-term estimates of potential</li> <li>~25-30 Daily<br/>Metered large consumers</li> <li>~6-7 directly connect NTS industrials</li> <li>~~50-70 gas-fired power stations with distillate back-up</li> </ul> |                                                                                                                     | [53]   |
| Lifespan (years)           |                                                                                                                                                                                                                         |                                                                                                                     |        |
| Maximum build              |                                                                                                                                                                                                                         |                                                                                                                     |        |
| Maximum build per year     |                                                                                                                                                                                                                         |                                                                                                                     |        |
| Key drivers of costs       | Consumer's willingness<br>to accept to<br>compensation for<br>temporary reduction in<br>'service'                                                                                                                       |                                                                                                                     |        |

#### Table 66 Gas DSR

| D1.1 Energy Storage Mapping Report



| Parameter              | Value                                | Notes                                                                                                 | Source |
|------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------|--------|
| Туре                   | Infrastructure                       |                                                                                                       |        |
| Input                  | Liquefied Natural Gas                |                                                                                                       |        |
| Output                 | Natural gas                          |                                                                                                       |        |
| Maturity               | Mature                               |                                                                                                       |        |
| Effective capacity (%) | 100%                                 |                                                                                                       |        |
| Efficiency (%)         | 87%                                  | Total efficiency of liquefaction,<br>shipping & regasification based on<br>Nigeria to UK LNG shipping | [46]   |
| Response time          | Hours to Days                        | Hours if LNG storage on-site, otherwise days                                                          |        |
| Duration               | Hours to Days                        | Depending of on-site storage<br>availability                                                          |        |
| Typical capacity (MW)  | 25 GW to 30 GW                       | Based on South Hook                                                                                   | [47]   |
| Lifespan (years)       | 40 years                             |                                                                                                       | [48]   |
| Maximum build          |                                      |                                                                                                       |        |
| Maximum build rate     |                                      |                                                                                                       |        |
| Key drivers of costs   | Global price of LNG & shipping costs |                                                                                                       |        |

#### Table 67 Liquefied Natural Gas (LNG) terminal

#### Table 68 Direct Synthetic Natural Gas production and injection

| Parameter              | Value                             | Notes                                                             | Source |
|------------------------|-----------------------------------|-------------------------------------------------------------------|--------|
| Туре                   | Infrastructure                    |                                                                   |        |
| Input                  | Synthetic Natural Gas             |                                                                   |        |
| Output                 | Natural gas                       |                                                                   |        |
| Maturity               | Depending on technology           | Electrolysis is the most mature, and gasification the less mature |        |
| Effective capacity (%) | 100%                              |                                                                   |        |
| Efficiency (%)         | 60%                               | For biomass gasification with CCS                                 | [34]   |
| Response time          | Hours                             |                                                                   |        |
| Duration               | Hours to Days                     |                                                                   |        |
| Typical capacity (MW)  | 100kW to 10 MW                    |                                                                   |        |
| Lifespan (years)       | 30 years                          |                                                                   | [34]   |
| Maximum build          |                                   |                                                                   |        |
| Maximum build rate     |                                   |                                                                   |        |
| Key drivers of costs   | Biomass costs, CCS infrastructure |                                                                   |        |

Baringa Partners LLP is a Limited Liability Partnership registered in England and Wales with registration number OC303471 and with registered offices at 3rd Floor, Dominican Court, 17 Hatfields, London SE18DJ UK.



| Parameter              | Value          | Notes                                | Source |
|------------------------|----------------|--------------------------------------|--------|
| Туре                   | Infrastructure |                                      |        |
| Input                  | Bio-methane    |                                      |        |
| Output                 | Natural gas    |                                      |        |
| Maturity               | Moderate       |                                      |        |
| Effective capacity (%) | 100%           |                                      |        |
| Efficiency (%)         | 10% to 30%     | Based on Swedish demonstration plant | [49]   |
| Response time          | Hours          |                                      |        |
| Duration               | Hours to Days  |                                      |        |
| Typical capacity (kW)  | 0.5kW to 10kW  |                                      | [50]   |
| Lifespan (years)       | 25 years       |                                      | [50]   |
| Maximum build          |                |                                      |        |
| Maximum build rate     |                |                                      |        |
| Key drivers of costs   | Сарех          |                                      |        |

#### Table 69 Bio-methane Grid Injection

| D1.1 Energy Storage Mapping Report



| Parameter              | Value                                                      | Notes                                                                                                                         | Source |
|------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------|
| Туре                   | Infrastructure                                             |                                                                                                                               |        |
| Input                  | Electricity, coal, gas,<br>biomass                         | Several technologies can produce<br>hydrogen: coal & biomass<br>gasification, electrolysis & Stem<br>Methane Reformers        |        |
| Output                 | Hydrogen                                                   |                                                                                                                               |        |
| Maturity               | Depending on<br>technology                                 | Electrolysis is the most mature, and biomass gasification the less mature                                                     |        |
| Effective capacity (%) | 100%                                                       |                                                                                                                               |        |
| Efficiency (%)         | 45% to 70%                                                 | Depending on the technology: coal<br>gasification being the most efficient<br>and biomass gasification the least<br>efficient | [34]   |
| Response time          | Minutes (electrolysis) to<br>hours (other<br>technologies) |                                                                                                                               |        |
| Duration               | Unlimited                                                  |                                                                                                                               |        |
| Typical capacity (MW)  |                                                            |                                                                                                                               |        |
| Lifespan (years)       | 20 years to 40 years                                       | Electrolysis has the shortest lifetime,<br>whereas coal & biomass gasification<br>have the longest ones.                      | [34]   |
| Maximum build          |                                                            |                                                                                                                               |        |
| Maximum build rate     |                                                            |                                                                                                                               |        |
| Key drivers of costs   | Capex, fuel costs                                          |                                                                                                                               |        |

#### Table 70 Direct hydrogen production and injection

# C.3 Heat

| Parameter              | Value                                    | Notes                                   | Source |
|------------------------|------------------------------------------|-----------------------------------------|--------|
| Туре                   | Boiler                                   |                                         |        |
| Input                  | Natural gas, biomass                     |                                         |        |
| Output                 | Electricity, heat                        |                                         |        |
| Maturity               | Mature                                   |                                         |        |
| Effective capacity (%) | 100%                                     |                                         |        |
| Efficiency (%)         | 80% to 95%                               |                                         | [34]   |
| Response time          | 3 hours from cold, secs<br>when spinning |                                         |        |
| Duration               | Unlimited                                |                                         |        |
| Typical capacity (MW)  | 10kW to 50MW                             | Similar to CHP                          |        |
| Lifespan (years)       | 15 years                                 | Comparable to diesel generators         | [34]   |
| Maximum build          |                                          |                                         |        |
| Maximum build rate     | 400 MW/year                              | This figure applies to biomass CHP only | [34]   |
| Key drivers of costs   | Cost of gas, biomass                     |                                         |        |

<sup>|</sup> D1.1 Energy Storage Mapping Report

Baringa Partners LLP is a Limited Liability Partnership registered in England and Wales with registration number OC303471 and with registered offices at 3rd Floor, Dominican Court, 17 Hatfields, London SE18DJ UK.



| Parameter              | Value                                                              | Notes                                     | Source |
|------------------------|--------------------------------------------------------------------|-------------------------------------------|--------|
| Туре                   | District heating                                                   |                                           |        |
| Input                  | Waste heat                                                         |                                           |        |
| Output                 | District heat                                                      |                                           |        |
| Maturity               | Mature                                                             |                                           |        |
| Effective capacity (%) | 100%                                                               |                                           |        |
| Efficiency (%)         | 86%                                                                | Based on offtake of waste heat technology | [34]   |
| Response time          | Depends on<br>characteristics of source<br>(e.g. as per CHP above) |                                           |        |
| Duration               | Unlimited                                                          |                                           |        |
| Typical capacity (MW)  |                                                                    |                                           |        |
| Lifespan (years)       | 30 years                                                           |                                           | [34]   |
| Maximum build          |                                                                    |                                           |        |
| Maximum build rate     |                                                                    |                                           |        |
| Key drivers of costs   | Capex                                                              |                                           |        |

#### Table 72 District heat waste heat recovery

### Table 73 Building scale heaters (gas, electricity, biomass)

| Parameter              | Value                                                       | Notes                                                                                                       | Source |
|------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------|
| Туре                   | Boiler                                                      |                                                                                                             |        |
| Input                  | Natural gas, electricity, biomass, oil                      |                                                                                                             |        |
| Output                 | Heat                                                        |                                                                                                             |        |
| Maturity               | Mature                                                      |                                                                                                             |        |
| Effective capacity (%) | 100%                                                        |                                                                                                             |        |
| Efficiency (%)         | 70% (biomass) to 350%<br>(advanced air source<br>heat pump) |                                                                                                             | [34]   |
| Response time          | Minutes to Hours                                            | Depending on fuel and control system (automatic or manual)                                                  |        |
| Duration               | Minutes to hours                                            | Assuming integrated with heat<br>storage to provide flexibility without<br>significantly comprising comfort |        |
| Typical capacity (kW)  | 20kW to 70kW                                                | For boilers providing hot water and heat                                                                    |        |
| Lifespan (years)       | 20 years for heat pumps,<br>15 years for other<br>boilers   |                                                                                                             | [34]   |
| Maximum build          |                                                             |                                                                                                             |        |
| Maximum build rate     |                                                             |                                                                                                             |        |
| Key drivers of costs   | Fuel cost                                                   |                                                                                                             |        |

<sup>|</sup> D1.1 Energy Storage Mapping Report

Baringa Partners LLP is a Limited Liability Partnership registered in England and Wales with registration number OC303471 and with registered offices at 3rd Floor, Dominican Court, 17 Hatfields, London SE18DJ UK.